Do you want to publish a course? Click here

Extragalactic source population studies at very high energies in the Cherenkov Telescope Array era

129   0   0.0 ( 0 )
 Added by Tarek Hassan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Cherenkov Telescope Array (CTA) is the next generation ground-based $gamma$-ray observatory. It will provide an order of magnitude better sensitivity and an extended energy coverage, 20 GeV - 300 TeV, relative to current Imaging Atmospheric Cherenkov Telescopes (IACTs). IACTs, despite featuring an excellent sensitivity, are characterized by a limited field of view that makes the blind search of new sources very time inefficient. Fortunately, the $textit{Fermi}$-LAT collaboration recently released a new catalog of 1,556 sources detected in the 10 GeV - 2 TeV range by the Large Area Telescope (LAT) in the first 7 years of its operation (the 3FHL catalog). This catalog is currently the most appropriate description of the sky that will be energetically accessible to CTA. Here, we discuss a detailed analysis of the extragalactic source population (mostly blazars) that will be studied in the near future by CTA. This analysis is based on simulations built from the expected array configurations and information reported in the 3FHL catalog. These results show the improvements that CTA will provide on the extragalactic TeV source population studies, which will be carried out by Key Science Projects as well as dedicated proposals.



rate research

Read More

We outline the science prospects for gamma-ray bursts (GRBs) with the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory operating at energies above few tens of GeV. With its low energy threshold, large effective area and rapid slewing capabilities, CTA will be able to measure the spectra and variability of GRBs at multi-GeV energies with unprecedented photon statistics, and thereby break new ground in elucidating the physics of GRBs, which is still poorly understood. Such measurements will also provide crucial diagnostics of ultra-high-energy cosmic ray and neutrino production in GRBs, advance observational cosmology by probing the high-redshift extragalactic background light and intergalactic magnetic fields, and contribute to fundamental physics by testing Lorentz invariance violation with high precision. Aiming to quantify these goals, we present some simulated observations of GRB spectra and light curves, together with estimates of their detection rates with CTA. Although the expected detection rate is modest, of order a few GRBs per year, hundreds or more high-energy photons per burst may be attainable once they are detected. We also address various issues related to following up alerts from satellites and other facilities with CTA, as well as follow-up observations at other wavelengths. The possibility of discovering and observing GRBs from their onset including short GRBs during a wide-field survey mode is also briefly discussed.
The Cherenkov Telescope Array (CTA) is the next generation observatory for very high energy gamma rays. The capability of the array to detect gamma-rays above 10 TeV is going to be achieved with a large number of Small Size Telescopes (SSTs) which will cover a large area. The subarray composed of SSTs has to compromise the number of telescopes (cost) and the large effective area. The separation between the telescopes has to be adjusted to achieve highest sensitivity with the smallest number of telescopes. On the other hand larger separation can worsen the energy threshold as well as the energy and angular resolutions. In our study we have investigated the optimal spacing between the telescopes of the SST array using an analytical approach and the concept of telescope cell consisting of four telescopes as well as Monte Carlo simulations of the sets of cells.
The Cherenkov Telescope Array (CTA) observatory will probe the non-thermal universe above 20 GeV up to several hundreds of TeV with a significant improvement in sensitivity and angular resolution compared to current experiments. Its outstanding capabilities will allow to increase the number of extragalactic cosmic accelerators detected at very high energy (VHE) and therefore to better constrain the population of VHE accelerators and the gamma-ray absorption processes in the intergalactic medium. For the first time in the history of imaging atmospheric Cherenkov telescopes (IACTs), CTA will be an open observatory and high-level data will be made available to the astronomical community. Gammapy is an open-source Python package developed by the Cherenkov telescope community that provides tools to simulate the gamma-ray sky and analyse IACT data. The versatile architecture of, and steady user contributions to Gammapy enable a large variety of high-level data analyses. Examples of Gaammapy applications are presented, particularly in the context of extragalactic science with CTA.
263 - Ambra Di Piano 2021
The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. To maximize the scientific return, the observatory will be provided with an online software system that will perform the first analysis of scientific data in real-time. This study investigates the precision and accuracy of available science tools and analysis techniques for the short-term detection of gamma-ray sources, in terms of sky localization, detection significance and, if significant detection is achieved, a first estimation of the integral photon flux. The scope is to evaluate the feasibility of the algorithms implementation in the real-time analysis of CTA. In this contribution we present a general overview of the methods and some of the results for the test case of the short-term detection of a gamma-ray burst afterglow, as the VHE counterpart of a gravitational wave event.
Supernova remnants are often presented as the most probable sources of Galactic cosmic rays. This idea is supported by the accumulation of evidence that particle acceleration is happening at supernova remnant shocks. Observations in the TeV range have especially contributed to increase the understanding of the mechanisms, but many aspects of the particle acceleration at supernova remnant shocks are still debated. The Cherenkov telescope array is expected to lead to the detection of many new supernova remnants in the TeV and multi-TeV range. In addition to the individual study of each, the study of these objects as a population can help constrain the parameters describing the acceleration of particles and increase our understanding of the mechanisms involved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا