Do you want to publish a course? Click here

MAGIC sensitivity to millisecond-duration optical pulses

124   0   0.0 ( 0 )
 Added by Tarek Hassan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MAGIC telescopes are a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to observe very high energy (VHE) gamma rays above ~50 GeV. However, as IACTs are sensitive to Cherenkov light in the UV/blue and use photo-detectors with a time response well below the ms scale, MAGIC is also able to perform simultaneous optical observations. Through an alternative system installed in the central PMT of MAGIC II camera, the so-called central pixel, MAGIC is sensitive to short (1ms - 1s) optical pulses. Periodic signals from the Crab pulsar are regularly monitored. Here we report for the first time the experimental determination of the sensitivity of the central pixel to isolated 1-10 ms long optical pulses. The result of this study is relevant for searches of fast transients such as Fast Radio Bursts (FRBs).



rate research

Read More

The Cherenkov Telescope Array (CTA) will be able to perform unprecedented observations of the transient very high-energy sky. An on-line science alert generation (SAG) pipeline, with a required 30 second latency, will allow the discovery or follow-up of gamma ray bursts (GRBs) and flaring emission from active galactic nuclei, galactic compact objects and electromagnetic counterparts of gravitational waves or neutrino messengers. The CTA sensitivity for very short exposures does not only depend on the technological performance of the array (e.g. effective area, background discrimination efficiency). The algorithms to evaluate the significance of the detection also define the sensitivity, together with their computational efficiency in order to satisfy the SAG latency requirements. We explore the aperture photometry and likelihood analysis techniques, and the associated parameters (e.g. on-source to off-source exposure ratio, minimum number of required signal events), defining the CTA ability to detect a significant signal at short exposures. The resulting CTA differential flux sensitivity as a function of the observing time, obtained using the latest Monte Carlo simulations, is compared to the sensitivities of Fermi-LAT and current-generation IACTs obtained in the overlapping energy ranges.
152 - Abelardo Moralejo 2009
A status report of the second phase of the MAGIC ground-based gamma-ray facility (as of October 2009) is presented. MAGIC became recently a stereoscopic Cherenkov observatory with the inauguration of its second telescope, MAGIC-II, which is currently approaching the end of its commissioning stage.
Although not designed primarily as a polarimeter, the textit{Fermi}-Large Area Telescope (LAT) has the potential to detect high degrees of linear polarization from some of the brightest gamma-ray sources. To achieve the needed accuracy in the reconstruction of the event geometry, low-energy ($leq200$ MeV) events converting in the silicon detector layers of the LAT tracker have to be used. We present preliminary results of the ongoing effort within the LAT collaboration to measure gamma-ray polarization. We discuss the statistical and systematic uncertainties affecting such a measurement. We show that a $5sigma$ minimum detectable polarization (MDP) of $approx30-50%$ could be within reach for the brightest gamma-ray sources as the Vela and Crab pulsars and the blazar 3C 454.3, after 10 years of observation. To estimate the systematic uncertainties, we stack bright AGN, and use this stack as a test source. LAT sensitivity to polarization is estimated comparing the data to a simulation of the expected unpolarized emission of the stack. We measure a 5$sigma$ sensitivity limit corresponding to a polarization degree of $approx37%$. This is in agreement with a purely statistical estimate, suggesting that the systematic errors are likely to be small compared to the statistical ones.
The science objectives of the LISA mission have been defined under the implicit assumption of a 4 yr continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $approx 0.75$, which would reduce the effective span of usable data to 3 yr. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 yr of mission operations is recommended.
435 - Emmanuel Baudin 2012
I describe composite pulses during which the average dipolar interactions within a spin ensemble are controlled while realizing a global rotation. The construction method used is based on the average Hamiltonian theory and rely on the geometrical properties of the spin-spin dipolar interaction only. I present several such composite pulses robust against standard experimental defects in NRM: static or radio-frequency field miscalibration, fields inhomogeneities. Numerical simulations show that the magic sandwich pulse sequence, a pulse sequence that reverse the average dipolar field while applied, is plagued by defects originating from its short initial and final pi/2 radio-frequency pulses. Using the magic composite pulses instead of pi/2 pulses improves the magic sandwich effect. A numerical test using a classical description of NMR allows to check the validity of the magic composite pulses and estimate their efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا