Do you want to publish a course? Click here

Attractive Strings and Five-Branes, Skew-Holomorphic Jacobi Forms and Moonshine

93   0   0.0 ( 0 )
 Added by Brandon Rayhaun
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that certain BPS counting functions for both fundamental strings and strings arising from fivebranes wrapping divisors in Calabi--Yau threefolds naturally give rise to skew-holomorphic Jacobi forms at rational and attractor points in the moduli space of string compactifications. For M5-branes wrapping divisors these are forms of weight negative one, and in the case of multiple M5-branes skew-holomorphic mock Jacobi forms arise. We further find that in simple examples these forms are related to skew-holomorphic (mock) Jacobi forms of weight two that play starring roles in moonshine. We discuss examples involving M5-branes on the complex projective plane, del Pezzo surfaces of degree one, and half-K3 surfaces. For del Pezzo surfaces of degree one and certain half-K3 surfaces we find a corresponding graded (virtual) module for the degree twelve Mathieu group. This suggests a more extensive relationship between Mathieu groups and complex surfaces, and a broader role for M5-branes in the theory of Jacobi forms and moonshine.



rate research

Read More

156 - Dohoon Choi , Subong Lim 2013
Eichler and Zagier developed a theory of Jacobi forms to understand and extend Maass work on the Saito-Kurokawa conjecture. Later Skoruppa introduced skew-holomorphic Jacobi forms, which play an important role in understanding liftings of modular forms and Jacobi forms. In this paper, we explain a relation between holomorphic Jacobi forms and skew-holomorphic Jacobi forms in terms of a group cohomology. More precisely, we introduce an isomorphism from the direct sum of the space of Jacobi cusp forms on $Gamma^J$ and the space of skew-holomorphic Jacobi cusp forms on $Gamma^J$ with the same half-integral weight to the Eichler cohomology group of $Gamma^J$ with a coefficient module coming from polynomials.
Umbral moonshine connects the symmetry groups of the 23 Niemeier lattices with 23 sets of distinguished mock modular forms. The 23 cases of umbral moonshine have a uniform relation to symmetries of $K3$ string theories. Moreover, a supersymmetric vertex operator algebra with Conway sporadic symmetry also enjoys a close relation to the $K3$ elliptic genus. Inspired by the above two relations between moonshine and $K3$ string theory, we construct a chiral CFT by orbifolding the free theory of 24 chiral fermions and two pairs of fermionic and bosonic ghosts. In this paper we mainly focus on the case of umbral moonshine corresponding to the Niemeier lattice with root system given by 6 copies of $D_4$ root system. This CFT then leads to the construction of an infinite-dimensional graded module for the umbral group $G^{D_4^{oplus 6}}$ whose graded characters coincide with the umbral moonshine functions. We also comment on how one can recover all umbral moonshine functions corresponding to the Niemeier root systems $A_5^{oplus 4}D_4$, $A_7^{oplus 2}D_5^{oplus 2}$ , $A_{11}D_7 E_6$, $A_{17}E_7$, and $D_{10}E_7^{oplus 2}$.
We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we compute the black hole mass and black string tension, leading to a conjectural formula for the asymptotic volumes of connected, locally volume-minimizing representatives of non-holomorphic, even-dimensional homology classes in the threefold, without knowledge of an explicit metric. In the case of divisors we find examples where the volume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon $AdS_3$ limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non-supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles).
Recent work on 6D superconformal field theories (SCFTs) has established an intricate correspondence between certain Higgs branch deformations and nilpotent orbits of flavor symmetry algebras associated with T-branes. In this paper, we return to the stringy origin of these theories and show that many aspects of these deformations can be understood in terms of simple combinatorial data associated with multi-pronged strings stretched between stacks of intersecting 7-branes in F-theory. This data lets us determine the full structure of the nilpotent cone for each semi-simple flavor symmetry algebra, and it further allows us to characterize symmetry breaking patterns in quiver-like theories with classical gauge groups. An especially helpful feature of this analysis is that it extends to short quivers in which the breaking patterns from different flavor symmetry factors are correlated.
This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi manifold in a very natural way as well as various tools. In the present paper, we solve the integration problem for holomorphic Jacobi manifolds by proving that they integrate to complex contact groupoids. A crucial tool in our proof is what we call the homogenization scheme, which allows us to identify holomorphic Jacobi manifolds with homogeneous holomorphic Poisson manifolds and holomorphic contact groupoids with homogeneous complex symplectic groupoids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا