DIII Topological Superconductivity with Emergent Time-Reversal Symmetry


Abstract in English

We find a new class of topological superconductors which possess an emergent time-reversal symmetry that is present only after projecting to an effective low-dimensional model. We show that a topological phase in symmetry class DIII can be realized in a noninteracting system coupled to an $s$-wave superconductor only if the physical time-reversal symmetry of the system is broken, and we provide three general criteria that must be satisfied in order to have such a phase. We also provide an explicit model which realizes the class DIII topological superconductor in 1D. We show that, just as in time-reversal invariant topological superconductors, the topological phase is characterized by a Kramers pair of Majorana fermions that are protected by the emergent time-reversal symmetry.

Download