Nanostructured Polymer Films with Metal-like Thermal Conductivity


Abstract in English

Thermally conductive polymers are of fundamental interest and can also be exploited in thermal management applications. Recent studies have shown stretched polymers can achieve high thermal conductivity. However, the transport mechanisms of heat in thermally conductive polymers have yet to be elucidated. Here we report a method for scalable fabrication of polyethylene films with a high thermal conductivity of 62 W/m-K. The achieved thermal conductivity is over two orders-of-magnitude greater than that of typical polymers (~0.1 W/m-K), and exceeds those of many metals and ceramics used as traditional heat conductors. Careful structural studies are carried out and reveal that the film consists of nanofibers with crystalline and amorphous regions. Contrary to conventional wisdom, we reveal the importance of the amorphous morphology in achieving such high thermal conductivity, rather than simply from enhancements in the degree of crystallinity and crystallite alignment. The amorphous phase reaches a remarkably high thermal conductivity of ~16 W/m-K. Even still, we identify that the presence of this amorphous phase is the dominant factor as the film thermal conductivity is still much lower than the predicted values for bulk single-crystal polyethylene (237 K/m-K). This work lays the foundation for the rational design and synthesis of thermally conductive polymers, and opens up new opportunities for advanced heat management, particularly when flexible, lightweight, chemically inert and electrically insulating thermal conductors are desired.

Download