Do you want to publish a course? Click here

Parity-Engineered Light-Matter Interaction

81   0   0.0 ( 0 )
 Added by Jan Goetz
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum electrodynamics, parity is conserved and large field gradients are required to engineer the parity of the light-matter interaction operator. In this work, we engineer a potassium-like artificial atom represented by a specifically designed superconducting flux qubit. We control the wave function parity of the artificial atom with an effective orbital momentum provided by a resonator. By irradiating the artificial atom with spatially shaped microwave fields, we select the interaction parity in situ. In this way, we observe dipole and quadrupole selection rules for single state transitions and induce transparency via longitudinal coupling. Our work advances the design of tunable artificial multilevel atoms to a new level, which is particularly promising with respect to quantum chemistry simulations with near-term superconducting circuits.



rate research

Read More

Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlation functions for the cavity-photon operators fail to describe both the rate and the statistics of emitted photons. Following Glaubers original approach, we derive a simple and general quantum theory of photodetection, valid for arbitrary light-matter interaction strengths. Our derivation uses Fermis golden rule, together with an expansion of system operators in the eigenbasis of the interacting light-matter system, to arrive at the correct photodetection probabilities. We consider both narrow- and wide-band photodetectors. Our description is also valid for point-like detectors placed inside the optical cavity. As an application, we propose a gedanken experiment confirming the virtual nature of the bare excitations that enrich the ground state of the quantum Rabi model.
The coupling between defects in diamond and a superconducting microwave resonator is studied in the nonlinear regime. Both negatively charged nitrogen-vacancy and P1 defects are explored. The measured cavity mode response exhibits strong nonlinearity near a spin resonance. Data is compared with theoretical predictions and a good agreement is obtained in a wide range of externally controlled parameters. The nonlinear effect under study in the current paper is expected to play a role in any cavity-based magnetic resonance imaging technique and to impose a fundamental limit upon its sensitivity.
We address the quantum estimation of the diamagnetic, or $A^2$, term in an effective model of light-matter interaction featuring two coupled oscillators. First, we calculate the quantum Fisher information of the diamagnetic parameter in the interacting ground state. Then, we find that typical measurements on the transverse radiation field, such as homodyne detection or photon counting, permit to estimate the diamagnetic coupling constant with near-optimal efficiency in a wide range of model parameters. Should the model admit a critical point, we also find that both measurements would become asymptotically optimal in its vicinity. Finally, we discuss binary discrimination strategies between the two most debated hypotheses involving the diamagnetic term in circuit QED. While we adopt a terminology appropriate to the Coulomb gauge, our results are also relevant for the electric dipole gauge. In that case, our calculations would describe the estimation of the so-called transverse $P^2$ term. The derived metrological benchmarks are general and relevant to any implementation of the model, cavity and circuit QED being two relevant examples.
Quantum cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes and are coupled via the ubiquitous electromagnetic quantum vacuum. Cooperative effects can find applications, among other areas, in topological quantum optics, in quantum metrology or in quantum information. This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity by extending open quantum system dynamics methods, such as the master equation and quantum Langevin equations, to electron-photon interactions in strongly coupled and correlated quantum emitter ensembles. The methods are illustrated on a wide range of current research topics such as the design of nanoscale coherent light sources, highly-reflective quantum metasurfaces or low intracavity power superradiant lasers. The analytical approaches are developed for ensembles of identical two-level quantum emitters and then extended to more complex systems where frequency disorder or vibronic couplings are taken into account. The relevance of the approach ranges from atoms in optical lattices to quantum dots or molecular systems in solid-state environments.
73 - J. Mornhinweg 2020
We explore the nonlinear response of tailor-cut light-matter hybrid states in a novel regime, where both the Rabi frequency induced by a coherent driving field and the vacuum Rabi frequency set by a cavity field are comparable to the carrier frequency of light. In this previously unexplored strong-field limit of ultrastrong coupling, subcycle pump-probe and multi-wave mixing nonlinearities between different polariton states violate the normal-mode approximation while ultrastrong coupling remains intact, as confirmed by our mean-field model. We expect such custom-cut nonlinearities of hybridized elementary excitations to facilitate non-classical light sources, quantum phase transitions, or cavity chemistry with virtual photons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا