Do you want to publish a course? Click here

Cross section of curvature radiation absorption

108   0   0.0 ( 0 )
 Added by Nicola Locatelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

When treating the absorption of light, one focuses on the absorption coefficient, related to the probability of photons to survive while traversing a layer of material. From the point of view of particles doing the absorption, however, the elementary interaction of the particle with the photon is best described by the corresponding cross section. We revisit curvature radiation in order to find the absorption cross section for this process, making use of the Einstein coefficients and their relations with spontaneous and stimulated emission and true absorption. We derive the cross section as a function of the emission angle psi (i.e. the angle between the instantaneous velocity vector and the direction of the photon), and the cross section integrated over angles. Both are positive, contrary to the synchrotron case for which the cross section can be negative for large psi. Therefore, it is impossible to have curvature radiation masers. This has important consequences on sources of very large brightness temperatures that require a coherent emission process, such as pulsars and Fast Radio Bursts.



rate research

Read More

The paper deals with the one possible mechanism of the pulsar radio emission, i.e., with the collective curvature radiation of the relativistic particle stream moving along the curved magnetospheric magnetic field lines. It is shown that the electromagnetic wave containing one cylindrical harmonic exp{is{phi}} can not be radiated by the curvature radiation mechanism, that corresponds to radiation of a charged particle moving along curved magnetic field lines. The point is that the particle in vacuum radiates the triplex of harmonics (s, s pm 1), so for the collective curvature radiation the wave polarization is very important and cannot be fixed a priori. For this reason the polarization of real unstable waves must be determined directly from the solution of wave equations for the media. Its electromagnetic properties should be described by the dielectric permittivity tensor ^{epsilon}({omega},k,r), that contains the information on the reaction on all possible types of radiation.
Aims: We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way dust properties to derive dust masses in external galaxies. Methods: We used Herschel observations and atomic and molecular gas masses to estimate the disc-averaged dust emissivity at 250 micrometres, and from this, the absorption cross section per H atom and per dust mass. The emissivity requires one assumption, which is the CO-to-H_2 conversion factor, and the dust temperature is additionally required for the absorption cross section per H atom; yet another constraint on the dust-to-hydrogen ratio D/H, depending on metallicity, is required for the absorption cross section dust mass. Results: We find epsilon(250) = 0.82 +/- 0.07 MJy sr^-1 (1E20 H cm^-2)^-1 for galaxies with 4 < F(250)/F(500) < 5. This depends only weakly on the adopted CO-to-H_2 conversion factor. The value is almost the same as that for the Milky Way at the same colour ratio. Instead, for F(250)/F(500) > 6, epsilon(250) is lower than predicted by its dependence on the heating conditions. The reduction suggests a variation in dust emission properties for spirals of earlier type, higher metallicity, and with a higher fraction of molecular gas. When the standard emission properties of Galactic cirrus are used for these galaxies, their dust masses might be underestimated by up to a factor of two. Values for the absorption cross sections at the Milky Way metallicity are also close to those of the cirrus. Mild trends of the absorption cross sections with metallicity are found, although the results depend on the assumptions made.
Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a ~Jy flux at ~1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.
We consider the absorption of probe photons by electrons in the presence of an intense, pulsed, background field. Our analysis reveals an interplay between regularisation and gauge invariance which distinguishes absorption from its crossing-symmetric processes, as well as a physical interpretation of absorption in terms of degenerate processes in the weak field limit. In the strong field limit we develop a locally constant field approximation (LCFA) for absorption which also exhibits new features. We benchmark the LCFA against exact analytical calculations and explore its regime of validity. Pulse shape effects are also investigated, as well as infra-red and collinear limits of the absorption process.
X-ray absorption of high-redshift quasars is enigmatic, because it remains unclear where in the universe the absorbing gas is. If absorption occurs near the high-z host, it could help us understand early stages of galaxy formation. If it is in the intergalactic medium (IGM), it provides a unique way to probe this elusive baryon component. We report on observations of one of the brightest X-ray sources at a high redshift, RBS 315 (z=2.69). Despite several previous analyses, no definite conclusion as to the source of the curvature in its spectrum, whether absorption or intrinsic, could be reached. We present observations by XMM-Newton (EPIC and RGS) as well as NuSTAR and Swift/XRT. The XMM-Newton spectra of this source are of unprecedented quality. A purely statistical analysis of the CCD spectra yields no clear results - the spectrum is as likely to be photo-electrically absorbed as it is to be curved at the source, and no constraint on the position of the absorber can be obtained. Assuming absorption governs the spectral curvature, the lack of absorption lines in the grating spectra indicates the absorber is not well localized in redshift space, and could be dispersed over the cosmological scales of the IGM. Intrinsic curvature, however, can not be unambiguously ruled out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا