Do you want to publish a course? Click here

A Theoretical Model of X-ray Jets from Young Stellar Objects

76   0   0.0 ( 0 )
 Added by Shinsuke Takasao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a subclass of the X-ray jets from young stellar objects which are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models attribute the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of > 10^6 K even if the average field strength in the disk is moderately weak, > 1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass loss rate are consistent with the prediction of our model in the case of the disk magnetic field strength of ~20 G and the heating region of < 0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool to estimate the magnetic field strength. We also found that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead-zone size.



rate research

Read More

Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission is associated with these jets. This emission is relatively weak and compact, and sensitive radio interferometers are required to study it. Observations in the cm range are most useful to trace the base of the ionized jets, close to the central protostar, where optical or near-IR imaging is made difficult by the high extinction present. Radio recombination lines in jets (in combination with proper motions) should provide their 3D kinematics at very small scale. Future instruments such as the Square Kilometre Array (SKA) and the Next Generation Very Large Array (ngVLA) will be crucial to perform this kind of sensitive observations. Thermal jets are associated with both high and low mass protostars and possibly even with substellar objects. The ionizing mechanism of these radio jets appears to be related to shocks in the associated outflows, as suggested by the observed correlation between the cm luminosity and the outflow momentum rate. Some protostellar jets show indications of non-thermal emission in their lobes. Linearly polarized synchrotron emission has been found in the jet of HH 80-81, allowing one to map the jet magnetic field, a key ingredient to determine the collimation and ejection mechanisms. As only a fraction of the emission is polarized, very sensitive observations such as those that will be feasible with the interferometers previously mentioned are required to perform studies in a large sample of sources. Jets are present in many kinds of astrophysical scenarios. Characterizing radio jets in young stars, where thermal emission allows one to determine their physical conditions, would also be useful in understanding acceleration and collimation mechanisms in all kinds of astrophysical jets.
We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets towards high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8 and 8.6 GHz, made with angular resolutions of about 7, 4, 2, and 1 arcsec, respectively, towards six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L_bol > 20,000 L_sun), but underluminous in radio emission compared to that expected from its bolometric luminosity. This criteria makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact hii regions and two ultracompact hii regions. The two jets discovered are associated with two of the most luminous (70,000 and 100,000 Lsun) HMYSOs known to harbor this type of objects, showing that the phenomena of collimated ionized winds appears in the formation process of stars at least up to masses of ~ 20 M_sun and provides strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for 40,000 yr.
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks.
218 - Ivan Hubeny 2017
We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.
Like other young stellar objects (YSOs), FU Ori-type stars have been detected as strong X-ray emitters. However, little is known about how the outbursts of these stars affect their X-ray properties. We assemble available X-ray data from XMM Newton and Chandra observations of 16 FU Ori stars, including a new XMM Newton observation of Gaia 17bpi during its optical rise phase. Of these stars, six were detected at least once, while 10 were non-detections, for which we calculate upper limits on intrinsic X-ray luminosity ($L_X$) as a function of plasma temperature ($kT$) and column density ($N_H$). The detected FU Ori stars tend to be more X-ray luminous than typical for non-outbursting YSOs, based on comparison to a sample of low-mass stars in the Orion Nebula Cluster. FU Ori stars with high $L_X$ have been observed both at the onset of their outbursts and decades later. We use the Kaplan-Meier estimator to investigate whether the higher X-ray luminosities for FU Ori stars is characteristic or a result of selection effects, and we find the difference to be statistically significant ($p<0.01$) even when non-detections are taken into account. The additional X-ray luminosity of FU Ori stars relative to non-outbursting YSOs cannot be explained by accretion shocks, given the high observed plasma temperatures. This suggests that, for many FU Ori stars, either 1) the outburst leads to a restructuring of the magnetosphere in a way that enhances X-ray emission, or 2) FU Ori outbursts are more likely to occur among YSOs with the highest quiescent X-ray luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا