No Arabic abstract
We present a learnt system for multi-view stereopsis. In contrast to recent learning based methods for 3D reconstruction, we leverage the underlying 3D geometry of the problem through feature projection and unprojection along viewing rays. By formulating these operations in a differentiable manner, we are able to learn the system end-to-end for the task of metric 3D reconstruction. End-to-end learning allows us to jointly reason about shape priors while conforming geometric constraints, enabling reconstruction from much fewer images (even a single image) than required by classical approaches as well as completion of unseen surfaces. We thoroughly evaluate our approach on the ShapeNet dataset and demonstrate the benefits over classical approaches as well as recent learning based methods.
We present a novel framework to learn to convert the perpixel photometric information at each view into spatially distinctive and view-invariant low-level features, which can be plugged into existing multi-view stereo pipeline for enhanced 3D reconstruction. Both the illumination conditions during acquisition and the subsequent per-pixel feature transform can be jointly optimized in a differentiable fashion. Our framework automatically adapts to and makes efficient use of the geometric information available in different forms of input data. High-quality 3D reconstructions of a variety of challenging objects are demonstrated on the data captured with an illumination multiplexing device, as well as a point light. Our results compare favorably with state-of-the-art techniques.
Recent supervised multi-view depth estimation networks have achieved promising results. Similar to all supervised approaches, these networks require ground-truth data during training. However, collecting a large amount of multi-view depth data is very challenging. Here, we propose a self-supervised learning framework for multi-view stereo that exploit pseudo labels from the input data. We start by learning to estimate depth maps as initial pseudo labels under an unsupervised learning framework relying on image reconstruction loss as supervision. We then refine the initial pseudo labels using a carefully designed pipeline leveraging depth information inferred from higher resolution images and neighboring views. We use these high-quality pseudo labels as the supervision signal to train the network and improve, iteratively, its performance by self-training. Extensive experiments on the DTU dataset show that our proposed self-supervised learning framework outperforms existing unsupervised multi-view stereo networks by a large margin and performs on par compared to the supervised counterpart. Code is available at https://github.com/JiayuYANG/Self-supervised-CVP-MVSNet.
Learning-based multi-view stereo (MVS) methods have demonstrated promising results. However, very few existing networks explicitly take the pixel-wise visibility into consideration, resulting in erroneous cost aggregation from occluded pixels. In this paper, we explicitly infer and integrate the pixel-wise occlusion information in the MVS network via the matching uncertainty estimation. The pair-wise uncertainty map is jointly inferred with the pair-wise depth map, which is further used as weighting guidance during the multi-view cost volume fusion. As such, the adverse influence of occluded pixels is suppressed in the cost fusion. The proposed framework Vis-MVSNet significantly improves depth accuracies in the scenes with severe occlusion. Extensive experiments are performed on DTU, BlendedMVS, and Tanks and Temples datasets to justify the effectiveness of the proposed framework.
While 3D reconstruction is a well-established and widely explored research topic, semantic 3D reconstruction has only recently witnessed an increasing share of attention from the Computer Vision community. Semantic annotations allow in fact to enforce strong class-dependent priors, as planarity for ground and walls, which can be exploited to refine the reconstruction often resulting in non-trivial performance improvements. State-of-the art methods propose volumetric approaches to fuse RGB image data with semantic labels; even if successful, they do not scale well and fail to output high resolution meshes. In this paper we propose a novel method to refine both the geometry and the semantic labeling of a given mesh. We refine the mesh geometry by applying a variational method that optimizes a composite energy made of a state-of-the-art pairwise photo-metric term and a single-view term that models the semantic consistency between the labels of the 3D mesh and those of the segmented images. We also update the semantic labeling through a novel Markov Random Field (MRF) formulation that, together with the classical data and smoothness terms, takes into account class-specific priors estimated directly from the annotated mesh. This is in contrast to state-of-the-art methods that are typically based on handcrafted or learned priors. We are the first, jointly with the very recent and seminal work of [M. Blaha et al arXiv:1706.08336, 2017], to propose the use of semantics inside a mesh refinement framework. Differently from [M. Blaha et al arXiv:1706.08336, 2017], which adopts a more classical pairwise comparison to estimate the flow of the mesh, we apply a single-view comparison between the semantically annotated image and the current 3D mesh labels; this improves the robustness in case of noisy segmentations.
Multi-View Stereo (MVS) is a core task in 3D computer vision. With the surge of novel deep learning methods, learned MVS has surpassed the accuracy of classical approaches, but still relies on building a memory intensive dense cost volume. Novel View Synthesis (NVS) is a parallel line of research and has recently seen an increase in popularity with Neural Radiance Field (NeRF) models, which optimize a per scene radiance field. However, NeRF methods do not generalize to novel scenes and are slow to train and test. We propose to bridge the gap between these two methodologies with a novel network that can recover 3D scene geometry as a distance function, together with high-resolution color images. Our method uses only a sparse set of images as input and can generalize well to novel scenes. Additionally, we propose a coarse-to-fine sphere tracing approach in order to significantly increase speed. We show on various datasets that our method reaches comparable accuracy to per-scene optimized methods while being able to generalize and running significantly faster.