Do you want to publish a course? Click here

Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

94   0   0.0 ( 0 )
 Added by Ricardo Pablo Pedro
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we performed DFT calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n-type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the zigzag and armchair directions may permit the design of novel n-type electronic materials and spinctronics devices that incorporate both high electron affinities and very low internal reorganization energies.



rate research

Read More

We have carried out first-principles based DFT calculation on electronic properties of silicene monolayer on various (111) semi-conducting surfaces. We find that the relative stability and other properties of the silicene overlayer depends sensitively on whether the interacting top layer of the substrate is metal or non-metal terminated. The nature of silicene-monolayer on the metal termi- nated surface can be metallic or even magnetic, depending upon the choice of the substrate. The silicene overlayer undergoes n-type doping on metal terminated surface while it undergoes p-type doping on non metal terminated surfaces of the semiconductor substrates.
We present an approach to calculate total energies of nanoclusters based on first principles estimates. For very large clusters the total energy can be separated into surface, edge and corner energies, in addition to bulk contributions. Using this separation and estimating these with direct, first principles calculations, together with the relevant chemical potentials, we have calculated the total energies of Cu and CdSe tetrahedrons containing a large number of atoms. In our work we consider polyhedral clusters so that in addition our work provides direct information on relaxation. For Cu the effects are very small and the clusters vary uniformly from very small to very large sizes. For CdSe there are important variations in surface and edge structures for specific sizes; nevertheless, the approach can be used to extrapolate to large non-stoichiometric clusters with polar surfaces.
Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures (vdWHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene (BN/Si) vdWHs using first-principles calculations. We calculate the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)3/Si/BN. In (BN)n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO2 is semiconducting.
Silicene, a monolayer of silicon atoms tightly packed into a two-dimensional honeycomb lattice, is the challenging hypothetical reflection in the silicon realm of graphene, a one-atom thick graphite sheet, presently the hottest material in condensed matter physics. If existing, it would also reveal a cornucopia of new physics and potential applications. Here, we reveal the epitaxial growth of silicene stripes self-aligned in a massively parallel array on the anisotropic silver (110) surface. This crucial step in the silicene gold rush could give a new kick to silicon on the electronics road-map and opens the most promising route towards wide-ranging applications. A hint of superconductivity in these silicene stripes poses intriguing questions related to the delicate interplay between paired correlated fermions, massless Dirac fermions and bosonic quasi-particules in low dimensions.
227 - M. X. Chen , Z. Zhong , M. Weinert 2015
We propose a guideline for exploring substrates that stabilize the monolayer honeycomb structure of silicene and germanene while simultaneously preserve the Dirac states: in addition to have a strong binding energy to the monolayer, a suitable substrate should be a large-gap semiconductor with a proper workfunction such that the Dirac point lies in the gap and far from the substrate states when their bands align. We illustrate our idea by performing first-principles calculations for silicene and germanene on the Al-terminated (0001) surface of Al2O3 . The overlaid monolayers on Al-terminated Al2O3(0001) retain the main structural profile of the low-buckled honeycomb structure via a binding energy comparable to the one between silicene and Ag(111). Unfolded band structure derived from the k-projection method reveals that gapped Dirac cone is formed at the K point due to the structural distortion and the interaction with the substrate. The gaps of 0.4 eV and 0.3 eV respectively for the supported silicene and germanene suggest that they may have potential applications in nanoelectronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا