No Arabic abstract
Pitts and Starks $ u$-calculus is a paradigmatic total language for studying the problem of contextual equivalence in higher-order languages with name generation. Models for the $ u$-calculus that validate basic equivalences concerning names may be constructed using functor categories or nominal sets, with a dynamic allocation monad used to model computations that may allocate fresh names. If recursion is added to the language and one attempts to adapt the models from (nominal) sets to (nominal) domains, however, the direct-style construction of the allocation monad no longer works. This issue has previously been addressed by using a monad that combines dynamic allocation with continuations, at some cost to abstraction. This paper presents a direct-style model of a $ u$-calculus-like language with recursion using the novel framework of proof-relevant logical relations, in which logical relations also contain objects (or proofs) demonstrating the equivalence of (the semantic counterparts of) programs. Apart from providing a fresh solution to an old problem, this work provides an accessible setting in which to introduce the use of proof-relevant logical relations, free of the additional complexities associated with their use for more sophisticated languages.
The theory of program modules is of interest to language designers not only for its practical importance to programming, but also because it lies at the nexus of three fundamental concerns in language design: the phase distinction, computational effects, and type abstraction. We contribute a fresh synthetic take on program modules that treats modules as the fundamental constructs, in which the usual suspects of prior module calculi (kinds, constructors, dynamic programs) are rendered as derived notions in terms of a modal type-theoretic account of the phase distinction. We simplify the account of type abstraction (embodied in the generativity of module functors) through a lax modality that encapsulates computational effects. Our main result is a (significant) proof-relevant and phase-sensitive generalization of the Reynolds abstraction theorem for a calculus of program modules, based on a new kind of logical relation called a parametricity structure. Parametricity structures generalize the proof-irrelevant relations of classical parametricity to proof-relevant families, where there may be non-trivial evidence witnessing the relatedness of two programs -- simplifying the metatheory of strong sums over the collection of types, for although there can be no relation classifying relations, one easily accommodates a family classifying small families. Using the insight that logical relations/parametricity is itself a form of phase distinction between the syntactic and the semantic, we contribute a new synthetic approach to phase separated parametricity based on the slogan logical relations as types, iterating our modal account of the phase distinction. Then, to construct a simulation between two implementations of an abstract type, one simply programs a third implementation whose type component carries the representation invariant.
Formalising the pi-calculus is an illuminating test of the expressiveness of logical frameworks and mechanised metatheory systems, because of the presence of name binding, labelled transitions with name extrusion, bisimulation, and structural congruence. Formalisations have been undertaken in a variety of systems, primarily focusing on well-studied (and challenging) properties such as the theory of process bisimulation. We present a formalisation in Agda that instead explores the theory of concurrent transitions, residuation, and causal equivalence of traces, which has not previously been formalised for the pi-calculus. Our formalisation employs de Bruijn indices and dependently-typed syntax, and aligns the proved transitions proposed by Boudol and Castellani in the context of CCS with the proof terms naturally present in Agdas representation of the labelled transition relation. Our main contributions are proofs of the diamond lemma for residuation of concurrent transitions and a formal definition of equivalence of traces up to permutation of transitions.
It is well-known that constructing models of higher-order probabilistic programming languages is challenging. We show how to construct step-indexed logical relations for a probabilistic extension of a higher-order programming language with impredicative polymorphism and recursive types. We show that the resulting logical relation is sound and complete with respect to the contextual preorder and, moreover, that it is convenient for reasoning about concrete program equivalences. Finally, we extend the language with dynamically allocated first-order references and show how to extend the logical relation to this language. We show that the resulting relation remains useful for reasoning about examples involving both state and probabilistic choice.
We present a formalisation in Agda of the theory of concurrent transitions, residuation, and causal equivalence of traces for the pi-calculus. Our formalisation employs de Bruijn indices and dependently-typed syntax, and aligns the proved transitions proposed by Boudol and Castellani in the context of CCS with the proof terms naturally present in Agdas representation of the labelled transition relation. Our main contributions are proofs of the diamond lemma for the residuals of concurrent transitions and a formal definition of equivalence of traces up to permutation of transitions. In the pi-calculus transitions represent propagating binders whenever their actions involve bound names. To accommodate these cases, we require a more general diamond lemma where the target states of equivalent traces are no longer identical, but are related by a braiding that rewires the bound and free names to reflect the particular interleaving of events involving binders. Our approach may be useful for modelling concurrency in other languages where transitions carry metadata sensitive to particular interleavings, such as dynamically allocated memory addresses.
Appel and McAllesters step-indexed logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. However, proofs using step-indexed models typically involve tedious, error-prone, and proof-obscuring step-index arithmetic, so it is important to develop clean, high-level, equational proof principles that avoid mention of step indices. In this paper, we show how to reason about binary step-indexed logical relations in an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by Plotkin and Abadis logic for parametricity, but also supports recursively defined relations by means of the modal later operator from Appel, Melli`es, Richards, and Vouillons very modal model paper. We encode in LSLR a logical relation for reasoning relationally about programs in call-by-value System F extended with general recursive types. Using this logical relation, we derive a set of useful rules with which we can prove contextual equivalence and approximation results without counting steps.