Do you want to publish a course? Click here

Resolving the X-ray emission from the Lyman continuum emitting galaxy Tol 1247-232

92   0   0.0 ( 0 )
 Added by Philip Kaaret
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum ($Gamma = 1.6 pm 0.5$) and a high luminosity ($(9 pm 2) times 10^{40} rm , erg , s^{-1}$). Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence the X-ray emission likely arises from an accreting X-ray source: a low-luminosity AGN or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum ($Gamma = 1.2 pm 0.2$), high luminosity ($10^{41} rm , erg , s^{-1}$) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.



rate research

Read More

Low redshift, spatially resolved Lyman continuum (LyC) emitters allow us to clarify the processes for LyC escape from these starburst galaxies. We use Hubble Space Telescope (HST) WFC3 and ACS imaging of the confirmed low-redshift LyC emitter Tol 1247-232 to study the ionization structure of the gas and its relation to the ionizing star clusters. We perform ionization parameter mapping (IPM) using [O III]4959, 5007 and [O II]3727 imaging as the high- and low-ionization tracers, revealing broad, large-scale, optically thin regions originating from the center, and reaching the outskirts of the galaxy, consistent with LyC escape. We carry out stellar population synthesis modeling of the 26 brightest clusters using our HST photometry. Combining these data with the nebular photometry, we find a global LyC escape fraction of f_esc = 0.12, with uncertainties also consistent with zero escape and with all measured f_esc values for this galaxy. Our analysis suggests that, similar to other candidate LyC emitters, a two-stage starburst has taken place in this galaxy, with a 12 Myr old, massive, central cluster likely having pre-cleared regions in and around the center, and the second generation of 2 - 4 Myr old clusters dominating the current ionization, including some escape from the galaxy.
119 - D. Schaerer 2018
We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity, star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46% discovered recently. The Space Telescope Imaging Spectrograph spectrum shows strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(CIII])$=11.7 pm 2.9 AA$ rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, $log(xi_{rm ion}^0)=25.56$ erg$^{-1}$ Hz, comparable to that of other recently discovered $z sim 0.3-0.4$ LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing $xi_{rm ion}^0$ with increasing CIII] 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.
We report the discovery of J0121+0025, an extremely luminous and young star-forming galaxy (M_UV = -24.11, log[L_Lya / erg s^-1] = 43.8) at z = 3.244 showing copious Lyman continuum (LyC) leakage (f_esc,abs ~ 40%). High signal-to-noise ratio rest-frame UV spectroscopy with the Gran Telescopio Canarias reveals a high significance (7.9 sigma) emission below the Lyman limit (< 912A), with a flux density level f_900A = 0.78 +/- 0.10 uJy, and strong P-Cygni in wind lines of OVI 1033A, NV 1240A and CIV 1550A that are indicative of a young age of the starburst (<10 Myr). The spectrum is rich in stellar photospheric features, for which a significant contribution of an AGN at these wavelengths is ruled out. Low-ionization ISM absorption lines are also detected, but are weak (EW0 ~ 1A) and show large residual intensities, suggesting a clumpy geometry of the gas with a non-unity covering fraction or a highly ionized ISM. The contribution of a foreground and AGN contamination to the LyC signal is unlikely. Deep optical to Spitzer/IRAC 4.5um imaging show that the spectral energy distribution of J0121+0025 is dominated by the emission of the young starburst, with log(M*/Msun) = 9.9 +/- 0.1 and SFR = 981 +/- 232 Msun yr^-1. J0121+0025 is the most powerful LyC emitter known among the star-forming galaxy population. The discovery of such luminous and young starburst leaking LyC radiation suggests that a significant fraction of LyC photons can escape in sources with a wide range of UV luminosities and are not restricted to the faintest ones as previously thought. These findings might shed further light on the role of luminous starbursts to the cosmic reionization.
The radio source 1146+596 is hosted by an elliptical/S0 galaxy NGC,3894, with a low-luminosity active nucleus. The radio structure is compact, suggesting a very young age of the jets in the system. Recently, the source has been confirmed as a high-energy (HE, $>0.1$,GeV) $gamma$-ray emitter, in the most recent accumulation of the {it Fermi} Large Area Telescope (LAT) data. Here we report on the analysis of the archival {it Chandra} X-ray Observatory data for the central part of the galaxy, consisting of a single 40,ksec-long exposure. We have found that the core spectrum is best fitted by a combination of an ionized thermal plasma with the temperature of $simeq 0.8$,keV, and a moderately absorbed power-law component (photon index $Gamma = 1.4pm 0.4$, hydrogen column density $N_{rm H}/10^{22}$,cm$^{-2}$,$= 2.4pm 0.7$). We have also detected the iron K$alpha$ line at $6.5pm 0.1$,keV, with a large equivalent width of EW,$= 1.0_{-0.5}^{+0.9}$,keV. Based on the simulations of the {it Chandra}s Point Spread Function (PSF), we have concluded that, while the soft thermal component is extended on the scale of the galaxy host, the hard X-ray emission within the narrow photon energy range 6.0--7.0,keV originates within the unresolved core (effectively the central kpc radius). The line is therefore indicative of the X-ray reflection from a cold neutral gas in the central regions of NGC,3894. We discuss the implications of our findings in the context of the X-ray Baldwin effect. NGC,3894 is the first young radio galaxy detected in HE $gamma$-rays with the iron K$alpha$ line.
The bright type I Seyfert galaxy NGC 3516 was observed by {it Suzaku} twice, in 2005 October 12--15 and 2009 October 28--November 2, for a gross time coverage of 242 and 544 ksec and a net exposure of 134 and 255 ksec, respectively. The 2--10 keV luminosity was $2.8 times 10^{41}$ erg s$^{-1}$ in 2005, and $1.6 times 10^{41}$ erg s$^{-1}$ in 2009. The 1.4--1.7 keV and 2--10 keV count rates both exhibited peak-to-peak variations by a factor of $sim2$ in 2005, while $sim 4$ in 2009. In either observation, the 15--45 keV count rate was less variable. The 2--10 keV spectrum in 2005 was significantly more convex than that in 2009. Through a count-count-plot technique, the 2--45 keV signals in both data were successfully decomposed in a model-independent way into two distinct broadband components. One is a variable emission with a featureless spectral shape, and the other is a non-varying hard component accompanied by a prominent Fe-K emission line at 6.33 keV (6.40 keV in the rest frame). The former was fitted successfully by an absorbed power-law model, while the latter requires a new hard continuum in addition to a reflection component from distant materials. The spectral and variability differences between the two observations are mainly attributed to long-term changes of this new hard continuum, which was stable on time scales of several hundreds ksec.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا