Do you want to publish a course? Click here

Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap

44   0   0.0 ( 0 )
 Added by Simon Vandekar
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In neuroimaging, hundreds to hundreds of thousands of tests are performed across a set of brain regions or all locations in an image. Recent studies have shown that the most common family-wise error (FWE) controlling procedures in imaging, which rely on classical mathematical inequalities or Gaussian random field theory, yield FWE rates that are far from the nominal level. Depending on the approach used, the FWER can be exceedingly small or grossly inflated. Given the widespread use of neuroimaging as a tool for understanding neurological and psychiatric disorders, it is imperative that reliable multiple testing procedures are available. To our knowledge, only permutation joint testing procedures have been shown to reliably control the FWER at the nominal level. However, these procedures are computationally intensive due to the increasingly available large sample sizes and dimensionality of the images, and analyses can take days to complete. Here, we develop a parametric bootstrap joint testing procedure. The parametric bootstrap procedure works directly with the test statistics, which leads to much faster estimation of adjusted emph{p}-values than resampling-based procedures while reliably controlling the FWER in sample sizes available in many neuroimaging studies. We demonstrate that the procedure controls the FWER in finite samples using simulations, and present region- and voxel-wise analyses to test for sex differences in developmental trajectories of cerebral blood flow.



rate research

Read More

Given the cost and duration of phase III and phase IV clinical trials, the development of statistical methods for go/no-go decisions is vital. In this paper, we introduce a Bayesian methodology to compute the probability of success based on the current data of a treatment regimen for the multivariate linear model. Our approach utilizes a Bayesian seemingly unrelated regression model, which allows for multiple endpoints to be modeled jointly even if the covariates between the endpoints are different. Correlations between endpoints are explicitly modeled. This Bayesian joint modeling approach unifies single and multiple testing procedures under a single framework. We develop an approach to multiple testing that asymptotically guarantees strict family-wise error rate control, and is more powerful than frequentist approaches to multiplicity. The method effectively yields those of Ibrahim et al. and Chuang-Stein as special cases, and, to our knowledge, is the only method that allows for robust sample size determination for multiple endpoints and/or hypotheses and the only method that provides strict family-wise type I error control in the presence of multiplicity.
To detect differences between the mean curves of two samples in longitudinal study or functional data analysis, we usually need to partition the temporal or spatial domain into several pre-determined sub-areas. In this paper we apply the idea of large-scale multiple testing to find the significant sub-areas automatically in a general functional data analysis framework. A nonparametric Gaussian process regression model is introduced for two-sided multiple tests. We derive an optimal test which controls directional false discovery rates and propose a procedure by approximating it on a continuum. The proposed procedure controls directional false discovery rates at any specified level asymptotically. In addition, it is computationally inexpensive and able to accommodate different time points for observations across the samples. Simulation studies are presented to demonstrate its finite sample performance. We also apply it to an executive function research in children with Hemiplegic Cerebral Palsy and extend it to the equivalence tests.
Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document corpora. We present a double parametric bootstrap test for evaluating the fit of an NMF-based topic model based on the duality of the KL divergence and Poisson maximum likelihood estimation. The test correctly identifies whether a topic model based on an NMF approach yields reliable results in simulated and real data.
Mediation analysis has become an important tool in the behavioral sciences for investigating the role of intermediate variables that lie in the path between a randomized treatment and an outcome variable. The influence of the intermediate variable on the outcome is often explored using structural equation models (SEMs), with model coefficients interpreted as possible effects. While there has been significant research on the topic in recent years, little work has been done on mediation analysis when the intermediate variable (mediator) is a high-dimensional vector. In this work we present a new method for exploratory mediation analysis in this setting called the directions of mediation (DMs). The first DM is defined as the linear combination of the elements of a high-dimensional vector of potential mediators that maximizes the likelihood of the SEM. The subsequent DMs are defined as linear combinations of the elements of the high-dimensional vector that are orthonormal to the previous DMs and maximize the likelihood of the SEM. We provide an estimation algorithm and establish the asymptotic properties of the obtained estimators. This method is well suited for cases when many potential mediators are measured. Examples of high-dimensional potential mediators are brain images composed of hundreds of thousands of voxels, genetic variation measured at millions of SNPs, or vectors of thousands of variables in large-scale epidemiological studies. We demonstrate the method using a functional magnetic resonance imaging (fMRI) study of thermal pain where we are interested in determining which brain locations mediate the relationship between the application of a thermal stimulus and self-reported pain.
We propose a method for multiple hypothesis testing with familywise error rate (FWER) control, called the i-FWER test. Most testing methods are predefined algorithms that do not allow modifications after observing the data. However, in practice, analysts tend to choose a promising algorithm after observing the data; unfortunately, this violates the validity of the conclusion. The i-FWER test allows much flexibility: a human (or a computer program acting on the humans behalf) may adaptively guide the algorithm in a data-dependent manner. We prove that our test controls FWER if the analysts adhere to a particular protocol of masking and unmasking. We demonstrate via numerical experiments the power of our test under structured non-nulls, and then explore new forms of masking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا