Do you want to publish a course? Click here

Derivations of Group Algebras

379   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In the paper, a method of describing the outer derivations of the group algebra of a finitely presentable group is given. The description of derivations is given in terms of characters of the groupoid of the adjoint action of the group.



rate research

Read More

We characterize derivations and 2-local derivations from $M_{n}(mathcal{A})$ into $M_{n}(mathcal{M})$, $n ge 2$, where $mathcal{A}$ is a unital algebra over $mathbb{C}$ and $mathcal{M}$ is a unital $mathcal{A}$-bimodule. We show that every derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2,$ is the sum of an inner derivation and a derivation induced by a derivation from $mathcal{A}$ to $mathcal{M}$. We say that $mathcal{A}$ commutes with $mathcal{M}$ if $am=ma$ for every $ainmathcal{A}$ and $minmathcal{M}$. If $mathcal{A}$ commutes with $mathcal{M}$ we prove that every inner 2-local derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2$, is an inner derivation. In addition, if $mathcal{A}$ is commutative and commutes with $mathcal{M}$, then every 2-local derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2$, is a derivation.
Let R[G] be the group ring of a group G over an associative ring R with unity such that all prime divisors of orders of elements of G are invertible in R. If R is finite and G is a Chernikov (torsion FC-) group, then each R-derivation of R[G] is inner. Similar results also are obtained for other classes of groups G and rings R.
64 - Hongliang Chang , Yin Chen , 2020
We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime rings and unites many well-known generalized derivations that have already appeared extensively in the study of Lie algebras and other nonassociative algebras. After exploiting fundamental properties, we introduce and analyze their interiors, especially focusing on the rationality of the corresponding Hilbert series. Applying techniques in computational ideal theory we develop an approach to explicitly compute these new generalized derivations for the three-dimensional special linear Lie algebra over the complex field.
We show that in the class of solvable Lie algebras there exist algebras which admit local derivations which are not ordinary derivation and also algebras for which every local derivation is a derivation. We found necessary and sufficient conditions under which any local derivation of solvable Lie algebras with abelian nilradical and one-dimensional complementary space is a derivation. Moreover, we prove that every local derivation on a finite-dimensional solvable Lie algebra with model nilradical and maximal dimension of complementary space is a derivation.
We show that any local derivation on the solvable Leibniz algebras with model or abelian nilradicals, whose the dimension of complementary space is maximal is a derivation. We show that solvable Leibniz algebras with abelian nilradicals, which have 1-dimension complementary space, admit local derivations which are not derivations. Moreover, similar problem concerning 1-local derivations of such algebras are investigated and an example of solvable Leibniz algebra given such that any 2-local derivation on it is a derivation, but which admit local derivations which are not derivations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا