No Arabic abstract
A new series of cubic double perovskites Ba$_2R_{2/3}$TeO$_6$ ($R$ = Y, La, Pr, Nd, Sm-Lu) was synthesized via solid state reaction. The $R^{3+}$ and Te$^{6+}$ ions are ordered on alternating octahedral sites, with the rare earth sites 2/3 occupied to balance the charge. The lattice parameters decrease monotonically from a = 8.5533(3) {AA} for Ba$_2$La$_{2/3}$TeO$_6$ to a = 8.3310(4) {AA} for Ba$_2$Lu$_{2/3}$TeO$_6$. The lattice parameter for $R$ = Y is close to that of Ho. Analysis of the resulting bond lengths indicates a structural relaxation around the $R$ ion site. Ba$_2$La$_{2/3}$TeO$_6$, Ba$_2$Y$_{2/3}$TeO$_6$ and Ba$_2$Lu$_{2/3}$TeO$_6$ show primarily temperature-independent magnetic susceptibility due to the lack of a local rare earth moment. For Ba$_2$Sm$_{2/3}$TeO$_6$ and Ba$_2$Eu$_{2/3}$TeO$_6$, the susceptibilities are influenced by Van Vleck-like contributions from excited state multiplets. For the remaining members, the Curie-Weiss law is followed with low-temperature deviations that can be associated with various degrees of crystalline electric field splitting. No magnetic ordering was observed down to 1.8 K in any of the compounds.
We report on structural and superconducting properties of La(3-x)R(x)Ni2B2N3 where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3 and Nd3Ni2B2N3 are characterized for the first time. Powder X-ray diffraction confirmed all samples R3Ni2B2N3 with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La(3-x)R(x)Ni2B2N3 were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3 has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3 exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3 shows ferrimagnetic ordering below T_C = 17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.
The direct correspondence between Co band ferromagnetism and structural parameters is investigated in the pnictide oxides $R$CoPO for different rare-earth ions ($R$ = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and {it ab-initio} calculations, complementing our results published previously [G. Prando {it et al.}, {it Phys. Rev. B} {bf 87}, 064401 (2013)]. Both the transition temperature to the ferromagnetic phase $T_{_{textrm{C}}}$ and the volume of the crystallographic unit cell $V$ are found to be conveniently tuned by the $R$ ionic radius and/or external pressure. A linear correlation between $T_{_{textrm{C}}}$ and $V$ is reported and {it ab-initio} calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, $R$ ions are shown to be influencing the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic $f$ degrees of freedom, which are only giving a sizeable magnetic contribution at much lower temperatures.
We have investigated the temperature dependence of the magnetic susceptibility $chi(T)$ of rare-earth cobaltites RCoO$_3$ (R= La, Pr, Nd, Sm, Eu) in the temperature range $4.2-300$ K and also the influence of hydrostatic pressure up to 2 kbar on their susceptibility at fixed temperatures $T=78 $ and 300 K. The specific dependence $chi(T)$ observed in LaCoO$_3$ and the anomalously large pressure effect (d ln $chi$/d$Psim -100$ Mbar$^{-1}$ for $T = 78$ K) are analyzed in the framework of a two-level model with energy levels difference $Delta$. The ground state of the system is assumed to be nonmagnetic with the zero spin of Co$^{3+}$ ions, and magnetism at a finite temperature is determined by the excited magnetic spin state. The results of the analysis, supplemented by theoretical calculations of the electronic structure of LaCoO$_3$, indicate a significant increase in $Delta$ with a decrease in the unit cell volume under the hydrostatic pressure. In the series of RCoO$_3$ (R= Pr, Nd, Sm, Eu) compounds, the volume of crystal cell decreases monotonically due to a decrease in the radius of R$^{3+}$ ions. This leads to an increase in the relative energy $Delta$ of the excited state (the chemical pressure effect), which manifests itself in a decrease in the contribution of cobalt ions to the magnetic susceptibility at a fixed temperature, and also in a decrease in the hydrostatic pressure effect on the susceptibility of RCoO$_3$ compounds, which we have observed at $T=300$ K.
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find high-temperature anomalies around 250 K in all samples. In contrast, the thermal conductivity $kappa_c$ perpendicular to the CuO$_2$ planes, which we measured for R = La, Pr, and Gd, shows a conventional temperature dependence as expected for a purely phononic thermal conductivity. This qualitative anisotropy of $kappa_i$ and the anomalous temperature dependence of $kappa_{ab}$ give evidence for a significant magnetic contribution $kappa_{mag}$ to the heat transport within the CuO$_2$ planes. Our results suggest, that a large magnetic contribution to the heat current is a common feature of single-layer cuprates. We find that $kappa_{mag}$ is hardly affected by structural instabilities, whereas already weak charge carrier doping causes a strong suppression of $kappa_{mag}$.
The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe3 family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the resistivity of DyTe3 indicates that additional nesting of the reconstructed Fermi surface in the CDW state plays an important role in determining the magnetic structure.