Hot collisionless accretion flows, such as the one in Sgr A$^{*}$ at our Galactic center, provide a unique setting for the investigation of magnetic reconnection. Here, protons are non-relativistic while electrons can be ultra-relativistic. By means of two-dimensional particle-in-cell simulations, we investigate electron and proton heating in the outflows of trans-relativistic reconnection (i.e., $sigma_wsim 0.1-1$, where the magnetization $sigma_w$ is the ratio of magnetic energy density to enthalpy density). For both electrons and protons, we find that heating at high $beta_{rm i}$ (here, $beta_{rm i}$ is the ratio of proton thermal pressure to magnetic pressure) is dominated by adiabatic compression (adiabatic heating), while at low $beta_{rm i}$ it is accompanied by a genuine increase in entropy (irreversible heating). For our fiducial $sigma_w=0.1$, the irreversible heating efficiency at $beta_{rm i}lesssim 1$ is nearly independent of the electron-to-proton temperature ratio $T_{rm e}/T_{rm i}$ (which we vary from $0.1$ up to $1$), and it asymptotes to $sim 2%$ of the inflowing magnetic energy in the low-$beta_{rm i}$ limit. Protons are heated more efficiently than electrons at low and moderate $beta_{rm i}$ (by a factor of $sim7$), whereas the electron and proton heating efficiencies become comparable at $beta_{rm i}sim 2$ if $T_{rm e}/T_{rm i}=1$, when both species start already relativistically hot. We find comparable heating efficiencies between the two species also in the limit of relativistic reconnection ($sigma_wgtrsim 1$). Our results have important implications for the two-temperature nature of collisionless accretion flows, and may provide the sub-grid physics needed in general relativistic MHD simulations.