Do you want to publish a course? Click here

Some stylized facts of the Bitcoin market

64   0   0.0 ( 0 )
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

In recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compares Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process.



rate research

Read More

In this work we afford the statistical characterization of a linear Stochastic Volatility Model featuring Inverse Gamma stationary distribution for the instantaneous volatility. We detail the derivation of the moments of the return distribution, revealing the role of the Inverse Gamma law in the emergence of fat tails, and of the relevant correlation functions. We also propose a systematic methodology for estimating the parameters, and we describe the empirical analysis of the Standard & Poor 500 index daily returns, confirming the ability of the model to capture many of the established stylized fact as well as the scaling properties of empirical distributions over different time horizons.
Interbank markets are fundamental for bank liquidity management. In this paper, we introduce a model of interbank trading with memory. Our model reproduces features of preferential trading patterns in the e-MID market recently empirically observed through the method of statistically validated networks. The memory mechanism is used to introduce a proxy of trust in the model. The key idea is that a lender, having lent many times to a borrower in the past, is more likely to lend to that borrower again in the future than to other borrowers, with which the lender has never (or has in- frequently) interacted. The core of the model depends on only one parameter representing the initial attractiveness of all the banks as borrowers. Model outcomes and real data are compared through a variety of measures that describe the structure and properties of trading networks, including number of statistically validated links, bidirectional links, and 3-motifs. Refinements of the pairing method are also proposed, in order to capture finite memory and reciprocity in the model. The model is implemented within the Mason framework in Java.
In informationally efficient financial markets, option prices and this implied volatility should immediately be adjusted to new information that arrives along with a jump in underlyings return, whereas gradual changes in implied volatility would indicate market inefficiency. Using minute-by-minute data on S&P 500 index options, we provide evidence regarding delayed and gradual movements in implied volatility after the arrival of return jumps. These movements are directed and persistent, especially in the case of negative return jumps. Our results are significant when the implied volatilities are extracted from at-the-money options and out-of-the-money puts, while the implied volatility obtained from out-of-the-money calls converges to its new level immediately rather than gradually. Thus, our analysis reveals that the implied volatility smile is adjusted to jumps in underlyings return asymmetrically. Finally, it would be possible to have statistical arbitrage in zero-transaction-cost option markets, but under actual option price spreads, our results do not imply abnormal option returns.
This letter revisits the informational efficiency of the Bitcoin market. In particular we analyze the time-varying behavior of long memory of returns on Bitcoin and volatility 2011 until 2017, using the Hurst exponent. Our results are twofold. First, R/S method is prone to detect long memory, whereas DFA method can discriminate more precisely variations in informational efficiency across time. Second, daily returns exhibit persistent behavior in the first half of the period under study, whereas its behavior is more informational efficient since 2014. Finally, price volatility, measured as the logarithmic difference between intraday high and low prices exhibits long memory during all the period. This reflects a different underlying dynamic process generating the prices and volatility.
In light of micro-scale inefficiencies induced by the high degree of fragmentation of the Bitcoin trading landscape, we utilize a granular data set comprised of orderbook and trades data from the most liquid Bitcoin markets, in order to understand the price formation process at sub-1 second time scales. To achieve this goal, we construct a set of features that encapsulate relevant microstructural information over short lookback windows. These features are subsequently leveraged first to generate a leader-lagger network that quantifies how markets impact one another, and then to train linear models capable of explaining between 10% and 37% of total variation in $500$ms future returns (depending on which market is the prediction target). The results are then compared with those of various PnL calculations that take trading realities, such as transaction costs, into account. The PnL calculations are based on natural $textit{taker}$ strategies (meaning they employ market orders) that we associate to each model. Our findings emphasize the role of a markets fee regime in determining its propensity to being a leader or a lagger, as well as the profitability of our taker strategy. Taking our analysis further, we also derive a natural $textit{maker}$ strategy (i.e., one that uses only passive limit orders), which, due to the difficulties associated with backtesting maker strategies, we test in a real-world live trading experiment, in which we turned over 1.5 million USD in notional volume. Lending additional confidence to our models, and by extension to the features they are based on, the results indicate a significant improvement over a naive benchmark strategy, which we also deploy in a live trading environment with real capital, for the sake of comparison.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا