Do you want to publish a course? Click here

Qubit compatible superconducting interconnects

196   0   0.0 ( 0 )
 Added by Brooks Foxen
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the 3D integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1$,$K), limited by the aluminum. These interconnects have an average critical current of 26.8$,$mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.



rate research

Read More

341 - F. Lecocq , F. Quinlan , K. Cicak 2020
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that connect room temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the possible size of a processor to a few thousand qubits. Here we introduce a photonic link employing an optical fiber to guide modulated laser light from room temperature to a cryogenic photodetector, capable of delivering shot-noise limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fiber enables efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.
The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However, superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for todays qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.
We present a hybrid semiconductor-based superconducting qubit device which remains coherent at magnetic fields up to 1 T. The qubit transition frequency exhibits periodic oscillations with magnetic field, consistent with interference effects due to the magnetic flux threading the cross section of the proximitized semiconductor nanowire junction. As induced superconductivity revives, additional coherent modes emerge at high magnetic fields, which we attribute to the interaction of the qubit and low-energy Andreev states.
Integrated on-demand single-photon sources are critical for the implementation of photonic quantum information processing systems. To enable practical quantum photonic devices, the emission rates of solid-state quantum emitters need to be substantially enhanced and the emitted signal must be directly coupled to an on-chip circuitry. The photon emission rate speed-up is best achieved via coupling to plasmonic antennas, while on-chip integration can be easily obtained by directly coupling emitters to photonic waveguides. The realization of practical devices requires that both the emission speed-up and efficient out-couping are achieved in a single architecture. Here, we propose a novel platform that effectively combines on-chip compatibility with high radiative emission rates, a quantum plasmonic launcher. The proposed launchers contain single nitrogen-vacancy (NV) centers in nanodiamonds as quantum emitters that offer record-high average fluorescence lifetime shortening factors of about 7000 times. Nanodiamonds with single NV are sandwiched between two silver films that couple more than half of the emission into in-plane propagating surface plasmon polaritons. This simple, compact, and scalable architecture represents a crucial step towards the practical realization of high-speed on-chip quantum networks.
Topological- and strongly-correlated- materials are exciting frontiers in condensed matter physics, married prominently in studies of the fractional quantum hall effect [1]. There is an active effort to develop synthetic materials where the microscopic dynamics and ordering arising from the interplay of topology and interaction may be directly explored. In this work we demonstrate a novel architecture for exploration of topological matter constructed from tunnel-coupled, time-reversalbroken microwave cavities that are both low loss and compatible with Josephson junction-mediated interactions [2]. Following our proposed protocol [3] we implement a square lattice Hofstadter model at a quarter flux per plaquette ({alpha} = 1/4), with time-reversal symmetry broken through the chiral Wannier-orbital of resonators coupled to Yttrium-Iron-Garnet spheres. We demonstrate site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the approach by erecting a tunnel barrier investigating dynamics across it. With the introduction of Josephson-junctions to mediate interactions between photons, this platform is poised to explore strongly correlated topological quantum science for the first time in a synthetic system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا