No Arabic abstract
We calculate the evolution and gravitational-wave emission of a spinning compact object inspiraling into a substantially more massive (non-rotating) black hole. We extend our previous model for a non-spinning binary [Phys. Rev. D 93, 064024] to include the Mathisson-Papapetrou-Dixon spin-curvature force. For spin-aligned binaries we calculate the dephasing of the inspiral and associated waveforms relative to models that do not include spin-curvature effects. We find this dephasing can be either positive or negative depending on the initial separation of the binary. For binaries in which the spin and orbital angular momentum are not parallel, the orbital plane precesses and we use a more general osculating element prescription to compute inspirals.
We present the gravitational-wave flux balance law in an extreme mass-ratio binary with a spinning secondary. This law relates the flux of energy (angular momentum) radiated to null infinity and through the event horizon to the local change in the secondarys orbital energy (angular momentum) for generic (non-resonant) bound orbits in Kerr spacetime. As an explicit example we compute these quantities for a spin-aligned body moving on a circular orbit around a Schwarzschild black hole. We perform this calculation both analytically, via a high-order post-Newtonian expansion, and numerically in two different gauges. Using these results we demonstrate explicitly that our new balance law holds.
The construction of constraint-satisfying initial data is an essential element for the numerical exploration of the dynamics of compact-object binaries. While several codes have been developed over the years to compute generic quasi-equilibrium configurations of binaries comprising either two black holes, or two neutron stars, or a black hole and a neutron star, these codes are often not publicly available or they provide only a limited capability in terms of mass ratios and spins of the components in the binary. We here present a new open-source collection of spectral elliptic solvers that are capable of exploring the major parameter space of binary black holes (BBHs), binary neutron stars (BNSs), and mixed binaries of black holes and neutron stars (BHNSs). Particularly important is the ability of the spectral-solver library to handle neutron stars that are either irrotational or with an intrinsic spin angular momentum that is parallel to the orbital one. By supporting both analytic and tabulated equations of state at zero or finite temperature, the new infrastructure is particularly geared towards allowing for the construction of BHNS and BNS binaries. For the latter, we show that the new solvers are able to reach the most extreme corners in the physically plausible space of parameters, including extreme mass ratios and spin asymmetries, thus representing the most extreme BNS computed to date. Through a systematic series of examples, we demonstrate that the solvers are able to construct quasi-equilibrium and eccentricity-reduced initial data for BBHs, BNSs, and BHNSs, achieving spectral convergence in all cases. Furthermore, using such initial data, we have carried out evolutions of these systems from the inspiral to after the merger, obtaining evolutions with eccentricities $lesssim 10^{-4}-10^{-3}$, and accurate gravitational waveforms.
We present an analytic computation of Detweilers redshift invariant for a point mass in a circular orbit around a Kerr black hole, giving results up to 8.5 post-Newtonian order while making no assumptions on the magnitude of the spin of the black hole. Our calculation is based on the functional series method of Mano, Suzuki and Takasugi, and employs a rigorous mode-sum regularization prescription based on the Detweiler-Whiting singular-regular decomposition. The approximations used in our approach are minimal; we use the standard self-force expansion to linear order in the mass ratio, and the standard post-Newtonian expansion in the separation of the binary. A key advantage of this approach is that it produces expressions that include contributions at all orders in the spin of the Kerr black hole. While this work applies the method to the specific case of Detweilers redshift invariant, it can be readily extended to other gauge invariant quantities and to higher post-Newtonian orders.
Extreme mass-ratio inspirals~(EMRIs) detectable by the Laser Inteferometric Space Antenna~(LISA) are unique probes of astrophysics and fundamental physics. Parameter estimation for these sources is challenging, especially because the waveforms are long, complicated, known only numerically, and slow to compute in the most relevant regime, where the dynamics is relativistic. We perform a time-consuming Fisher-matrix error analysis of the EMRI parameters using fully-relativistic numerical waveforms to leading order in an adiabatic expansion on a Kerr background, taking into account the motion of the LISA constellation, higher harmonics, and also including the leading correction from the spin of the secondary in the post-adiabatic approximation. We pay particular attention to the convergence of the numerical derivatives in the Fisher matrix and to the numerical stability of the covariance matrix, which for some systems requires computing the numerical waveforms with approximately $90$-digit precision. Our analysis confirms previous results (obtained with approximated but much more computationally efficient waveforms) for the measurement errors on the binarys parameters. We also show that the inclusion of higher harmonics improves the errors on the luminosity distance and on the orbital angular momentum angles by one order and two orders of magnitude, respectively, which might be useful to identify the environments where EMRIs live. We particularly focus on the measurability of the spin of the secondary, confirming that it cannot be measured with sufficient accuracy. However, due to correlations, its inclusion in the waveform model can deteriorate the accuracy on the measurements of other parameters by orders of magnitude, unless a physically-motivated prior on the secondary spin is imposed.
We evolve a binary black hole system bearing a mass ratio of $q=m_1/m_2=2/3$ and individual spins of $S^z_1/m_1^2=0.95$ and $S^z_2/m_2^2=-0.95$ in a configuration where the large black hole has its spin antialigned with the orbital angular momentum, $L^z$, and the small black hole has its spin aligned with $L^z$. This configuration was chosen to measure the maximum recoil of the remnant black hole for nonprecessing binaries. We find that the remnant black hole recoils at 500km/s, the largest recorded value from numerical simulations for aligned spin configurations. The remnant mass, spin, and gravitational waveform peak luminosity and frequency also provide a valuable point in parameter space for source modeling.