Directly Detecting MeV-scale Dark Matter via Solar Reflection


Abstract in English

If dark matter (DM) particles are lighter than a few MeV/$c^2$ and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass vs. cross section parameter space, ${m_e, sigma_e}$, the reflected component of the DM flux is far more energetic than the endpoint of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of $10-10^3$ eV. After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on $sigma_e$ in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

Download