Do you want to publish a course? Click here

Solar coronal lines in the visible and infrared. A rough guide

82   0   0.0 ( 0 )
 Added by Giulio Del Zanna
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the coronal visible and infrared lines, collecting previous observations, and comparing, whenever available, observed radiances with those predicted by various models: the quiet Sun, a moderately active Sun, and an active region as observed near the limb, around 1.1R$_{odot}$. We also model the off-limb radiances for the quiet Sun case. We used the most up-to-date atomic data in CHIANTI version 8. The comparison is satisfactory, in that all of the strong visible lines now have a firm identification. We revise several previous identifications and suggest some new ones. We also list the large number of observed lines for which we do not currently have atomic data, and therefore still await firm identifications. We also show that a significant number of coronal lines should be observable in the near-infrared region of the spectrum by the upcoming Daniel K. Inouye Solar Telescope (DKIST) and the AIR-Spec instrument, which observed the corona during the 2017 August 21 solar eclipse. We also briefly discuss the many potential spectroscopic diagnostics available to the visible and infrared, with particular emphasis on measurements of electron densities and chemical abundances. We briefly point out some of the potential diagnostics that could be available with the future infrared instrumentation that is being built for DKIST and planned for the Coronal Solar Magnetism Observatory (COSMO). Finally, we highlight the need for further improvements in the atomic data.



rate research

Read More

Metis is the first solar coronagraph designed for a space mission capable of performing simultaneous imaging of the off-limb solar corona in both visible and UV light. The observations obtained with Metis aboard the Solar Orbiter ESA-NASA observatory will enable us to diagnose, with unprecedented temporal coverage and spatial resolution, the structures and dynamics of the full corona from 1.7 $R_odot$ to about 9 $R_odot$. Due to the uniqueness of the Solar Orbiter mission profile, Metis will be able to observe the solar corona from a close vantage point (down to 0.28 AU), achieving out-of-ecliptic views with the increase of the orbit inclination over time. Moreover, observations near perihelion, during the phase of lower rotational velocity of the solar surface relative to the spacecraft, will allow longer-term studies of the coronal features. Thanks to a novel occultation design and a combination of a UV interference coating of the mirrors and a spectral bandpass filter, Metis images the solar corona simultaneously in the visible light band, between 580 and 640 nm, and in the UV H I Lyman-{alpha} line at 121.6 nm. The coronal images in both the UV Lyman-{alpha} and polarised visible light are obtained at high spatial resolution with a spatial scale down to about 2000 km and 15000 km at perihelion, in the cases of the visible and UV light, respectively. A temporal resolution down to 1 second can be achieved when observing coronal fluctuations in visible light. The Metis measurements will allow for complete characterisation of the main physical parameters and dynamics of the electron and neutral hydrogen/proton plasma components of the corona in the region where the solar wind undergoes acceleration and where the onset and initial propagation of coronal mass ejections take place, thus significantly improving our understanding of the region connecting the Sun to the heliosphere.
The Fourier transform spectrometer (FTS) is a core instrument for solar observation with high spectral resolution, especially in the infrared. The Infrared System for the Accurate Measurement of Solar Magnetic Field (AIMS), working at 10-13 $mu m$, will use a FTS to observe the solar spectrum. The Bruker IFS-125HR, which meets the spectral resolution requirement of AIMS but just equips with a point source detector, is employed to carry out preliminary experiment for AIMS. A sun-light feeding experimental system is further developed. Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength, respectively. We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas. Although there is a wavelength limitation due to the present sun-light feeding system, the results in the wavelength band from 0.45-1.0 $mu m$ and 1.0-2.2 $mu m$ show a good consistence with the solar spectrum atlas, indicating the validity of our observing configuration, the data analysis method and the potential to work in longer wavelength. The work provided valuable experience for the AIMS not only for the operation of a FTS but also for the development of its scientific data processing software.
Studying the properties of the solar convection using high-resolution spectropolarimetry began in the early 90s with the focus on observations in the visible wavelength regions. Its extension to the infrared (IR) remains largely unexplored. The IR iron lines around 15600,$rm{AA}$, most commonly known for their high magnetic sensitivity, also have a non-zero response to line-of-sight velocity below $log (tau)=0.0$. In this paper we aim to tap this potential to explore the possibility of using them to measure sub-surface convective velocities. By assuming a snapshot of a three-dimensional magnetohydrodynamic simulation to represent the quiet Sun, we investigate how well the iron IR lines can reproduce the LOS velocity in the cube and up to what depth. We use the recently developed spectropolarimetric inversion code SNAPI and discuss the optimal node placements for the retrieval of reliable results from these spectral lines. We find that the IR iron lines can measure the convective velocities down to $log (tau)=0.5$, below the photosphere, not only at original resolution of the cube but also when degraded with a reasonable spectral and spatial PSF and stray light. Meanwhile, the commonly used Fe~{sc i} 6300,AA{} line pair performs significantly worse. Our investigation reveals that the IR iron lines can probe the subsurface convection in the solar photosphere. This paper is a first step towards exploiting this diagnostic potential.
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using the high-quality imaging data of AIA/SDO, here we show a well-observed coronal jet event, in which part of the jets, with the embedding coronal loops, runs into a nearby coronal hole (CH) and gets bounced towards the opposite direction. This is evidenced by the flat-shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME initially with a narrow and jet-like front is observed by the LASCO C2 coronagraph, propagating along the direction of the post-collision jet. We also observe some 304 A dark material flowing from the jet-CH interaction region towards the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and the large- scale magnetic topology of the CH being important to define the eventual propagating direction of this particular jet-CME eruption.
We present coordinated coronal observations of the August 21, 2017 total solar eclipse with the Airborne Infrared Spectrometer (AIR-Spec) and the Extreme-ultraviolet Imaging Spectrometer (EIS). These instruments provide an unprecedented view of the solar corona in two disparate wavelength regimes, the near to mid infrared (IR) and the extreme ultraviolet (EUV), opening new pathways for characterizing the complex coronal plasma environment. During totality, AIR-Spec sampled coronal IR spectra near the equatorial west limb, detecting strong sources of Mg VIII, S XI, Si IX, and Si X in two passbands encompassing 1.4 - 4 $mu$m. We apply emission measure (EM) loci analysis to these IR emission lines to test their capacity as coronal temperature diagnostics. The density-sensitive Fe XII 186.9 r{A}/192.4 r{A} line pair supplies spatially resolved, line-of-sight electron densities, supporting the EM loci analysis. From this, we find EM loci intersections at temperatures of $10^{6.13}$ K at 30 arcsec from the limb and $10^{6.21}$ K at 100 arcsec. Applying the same EM loci analysis to 27 EIS emission lines associated with seven ion species (Fe X-XIV, S X, and Si X) confirms these results, displaying strong evidence of isothermal plasma throughout the region. However, the IR EM loci analysis suffers from moderate uncertainties. The likely sources include: poor signal, infrared contamination from a prominence, and photoexcitation by continuum radiation. Regardless, we demonstrate that EUV spectral data are valuable constraints to coronal infrared emission models, and will be powerful supplements for future IR solar observatories, particularly DKIST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا