No Arabic abstract
We present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector includes an ADC, and has good performance in the 360-1300 nm wavelength range. The top level science requirements were developed by a dedicated ESO working group, and one of the primary cases is high resolution spectroscopy of GAIA stars and, in general, how our Galaxy formed and evolves. The facility will therefore be equipped with both, high and low resolution spectrographs. We stress the importance of developing the telescope and instrument designs simultaneously. The most relevant R&D aspect is also briefly discussed.
The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.
High-multiplex and deep spectroscopic follow-up of upcoming panoramic deep-imaging surveys like LSST, Euclid, and WFIRST is a widely recognized and increasingly urgent necessity. No current or planned facility at a U.S. observatory meets the sensitivity, multiplex, and rapid-response time needed to exploit these future datasets. FOBOS, the Fiber-Optic Broadband Optical Spectrograph, is a near-term fiber-based facility that addresses these spectroscopic needs by optimizing depth over area and exploiting the aperture advantage of the existing 10m Keck II Telescope. The result is an instrument with a uniquely blue-sensitive wavelength range (0.31-1.0 um) at R~3500, high-multiplex (1800 fibers), and a factor 1.7 greater survey speed and order-of-magnitude greater sampling density than Subarus Prime Focus Spectrograph (PFS). In the era of panoramic deep imaging, FOBOS will excel at building the deep, spectroscopic reference data sets needed to interpret vast imaging data. At the same time, its flexible focal plane, including a mode with 25 deployable integral-field units (IFUs) across a 20 arcmin diameter field, enables an expansive range of scientific investigations. Its key programmatic areas include (1) nested stellar-parameter training sets that enable studies of the Milky Way and M31 halo sub-structure, as well as local group dwarf galaxies, (2) a comprehensive picture of galaxy formation thanks to detailed mapping of the baryonic environment at z~2 and statistical linking of evolving populations to the present day, and (3) dramatic enhancements in cosmological constraints via precise photometric redshifts and determined redshift distributions. In combination with Keck I instrumentation, FOBOS also provides instant access to medium-resolution spectroscopy for transient sources with full coverage from the UV to the K-band.
VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESOs Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < lambda < 1.0 micron) spectroscopy of ~2100 galaxies within the redshift interval 1.0 < z < 7.0, over a total area of ~0.2 sq. degrees centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z>=3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < t_int < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 < z < 5.5, b) massive quiescent galaxies at 1.0 < z < 2.5, c) fainter star-forming galaxies at 3.0 < z < 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherent data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). We discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.
Maunakea Spectroscopic Explorer will be a 10-m class highly multiplexed survey telescope, including a segmented primary mirror and robotic fiber positioners at the prime focus. MSE will replace the Canada France Hawaii Telescope (CFHT) on the summit of Mauna Kea, Hawaii. The multiplexing includes an array of over four thousand fibres feeding banks of spectrographs several tens of meters away. We present an overview of the requirements flow-down for MSE, from Science Requirements Document to Observatory Requirements Document. We have developed the system performance budgets, along with updating the budget architecture of our evolving project. We have also identified the links between subsystems and system budgets (and subsequently science requirements) and included system budget that are unique to MSE as a fiber-fed facility. All of this has led to a set of Observatory Requirements that is fully consistent with the Science Requirements.