It is proved that, for a prime $p>2$ and integer $ngeq 1$, finite $p$-groups of nilpotency class $3$ and having only two conjugacy class sizes $1$ and $p^n$ exist if and only if $n$ is even; moreover, for a given even positive integer, such a group is unique up to isoclinism (in the sense of Philip Hall).
Let $G$ be a finite group and $Irr(G)$ the set of irreducible complex characters of $G$. Let $e_p(G)$ be the largest integer such that $p^{e_p(G)}$ divides $chi(1)$ for some $chi in Irr(G)$. We show that $|G:mathbf{F}(G)|_p leq p^{k e_p(G)}$ for a constant $k$. This settles a conjecture of A. Moreto. We also study the related problems of the $p$-parts of conjugacy class sizes of finite groups.
Let $p$ be a prime and let $P$ be a Sylow $p$-subgroup of a finite nonabelian group $G$. Let $bcl(G)$ be the size of the largest conjugacy class of the group $G$. We show that $|P/O_p(G)| < bcl(G)$ if $G$ is not abelian.
It is proved that for any prime $p$ a finitely generated nilpotent group is conjugacy separable in the class of finite $p$-groups if and only if the torsion subgroup of it is a finite $p$-group and the quotient group by the torsion subgroup is abelian.
We classify finite $p$-groups, upto isoclinism, which have only two conjugacy class sizes $1$ and $p^3$. It turns out that the nilpotency class of such groups is $2$.
All finite simple groups are determined with the property that every Galois orbit on conjugacy classes has size at most 4. From this we list all finite simple groups $G$ for which the normalized group of central units of the integral group ring ZG is an infinite cyclic group.
Tushar Kanta Naik
,Rahul Dattatraya Kitture
,
.
(2017)
.
"Finite $p$-Groups of Nilpotency Class $3$ with Two Conjugacy Class Sizes"
.
Rahul Dattatraya Kitture
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا