Do you want to publish a course? Click here

The NGC 454 system: anatomy of a mixed on-going merger

86   0   0.0 ( 0 )
 Added by Henri Plana
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper focuses on NGC 454, a nearby interacting pair of galaxies (AM0112-554, RR23), composed of an early-type (NGC 454 E) and a star forming late-type companion (NGC 454 W). We aim at characterizing this wet merger candidate via a multi-lambda analysis, from near-UV to optical using SWIFT-UVOT, and mapping the Halpha intensity (I) distribution, velocity (Vr), and velocity dispersion (sigma) fields with SAM+Perot-Fabry at SOAR observations. Luminosity profiles suggest that NGC 454 E is an S0. Distortions in its outskirts caused by the on-going interaction are visible in both optical and near-UV frames. In NGC 454 W, the NUV-UVOT images and the Halpha show a set of star forming complexes connected by a faint tail. Halpha emission is detected along the line connecting NGC 454 E to the NGC 454 main HII complex. We investigate the (I-sigma), (I-Vr ) (Vr-sigma) diagnostic diagrams of the HII complexes, most of which can be interpreted in a framework of expanding bubbles. In the main HII complex, enclosed in the UV brightest region, the gas velocity dispersion is highly supersonic reaching 60 km/s. However, Halpha emission profiles are mostly asymmetric indicating the presence of multiple components with an irregular kinematics. Observations point towards an advanced stage of the encounter. Our SPH simulations with chemophotometric implementation suggest that this mixed pair can be understood in terms of a 1:1 gas/halos encounter giving rise to a merger in about 0.2 Gyr from the present stage.



rate research

Read More

135 - R. Mark Crockett 2010
(Abridged) We present a spatially-resolved near-UV/optical study of NGC 4150, using the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. Previous studies of this early-type galaxy (ETG) indicate that it has a large reservoir of molecular gas, exhibits a kinematically decoupled core (likely indication of recent merging) and strong, central H_B absorption (indicative of young stars). The core of NGC 4150 shows ubiquitous near-UV emission and remarkable dusty substructure. Our analysis shows this galaxy to lie in the near-UV green valley, and its pixel-by-pixel photometry exhibits a narrow range of near-UV/optical colours that are similar to those of nearby E+A (post-starburst) galaxies. We parametrise the properties of the recent star formation (age, mass fraction, metallicity and internal dust content) in the NGC 4150 pixels by comparing the observed near-UV/optical photometry to stellar models. The typical age of the recent star formation (RSF) is around 0.9 Gyrs, consistent with the similarity of the near-UV colours to post-starburst systems, while the morphological structure of the young component supports the proposed merger scenario. The RSF metallicity, representative of the metallicity of the gas fuelling star formation, is around 0.3 - 0.5 Zsun. Assuming that this galaxy is a merger and that the gas is sourced mainly from the infalling companion, these metallicities plausibly indicate the gas-phase metallicity (GPM) of the accreted satellite. Comparison to the local mass-GPM relation suggests (crudely) that the mass of the accreted system is around 3x10^8 Msun, making NGC 4150 a 1:20 minor merger. A summation of the pixel RSF mass fractions indicates that the RSF contributes about 2-3 percent of the stellar mass. This work reaffirms our hypothesis that minor mergers play a significant role in the evolution of ETGs at late epochs.
The merger remnant NGC 34 is a local luminous infrared galaxy (LIRG) hosting a nuclear starburst and a hard X-ray source associated with a putative, obscured Seyfert~2 nucleus. In this work, we use adaptive optics assisted near infrared (NIR) integral field unit observations of this galaxy to map the distribution and kinematics of the ionized and molecular gas in its inner $mathrm{1.2,kpc times 1.2,kpc}$, with a spatial resolution of 70~pc. The molecular and ionized gas kinematics is consistent with a disc with projected major axis along a mean PA~=~$mathrm{-9^{circ}.2 pm 0^{circ}.9}$. Our main findings are that NGC~34 hosts an AGN and that the nuclear starburst is distributed in a circumnuclear star-formation ring with inner and outer radii of $approx$~60 and 180~pc, respectively, as revealed by maps of the $mathrm{[Fe II] / Pabeta}$ and $mathrm{H_{2} / Brgamma}$ emission-line ratios, and corroborated by PCA Tomography analysis. The spatially resolved NIR diagnostic diagram of NGC~34 also identifies a circumnuclear structure dominated by processes related to the stellar radiation field and a nuclear region where $[Fe II]$ and H$_2$ emissions are enhanced relative to the hydrogen recombination lines. We estimate that the nuclear X-ray source can account for the central H$_2$ enhancement and conclude that $[Fe II]$ and H$_2$ emissions are due to a combination of photo-ionization by young stars, excitation by X-rays produced by the AGN and shocks. These emission lines show nuclear, broad, blue-shifted components that can be interpreted as nuclear outflows driven by the AGN.
A754 is a well-observed cluster of galaxies which exhibits a variety of morphological peculiarities. These include a bar of X-ray emission that is offset significantly from the galaxy distribution, an elongated X-ray surface brightness distribution extending between two distinct peaks in the galaxy distribution, and an extremely non-isothermal and asymmetric intracluster medium (ICM) temperature morphology. Using these observational constraints, we present a numerical Hydro/N-body model of A754 in which two clusters (2.5:1 mass ratio) have merged nearly in the plane of the sky less than 0.5 Gyrs ago with an impact parameter of ~120 kpc, and an impact velocity of ~2500 km/s (roughly the escape velocity of the primary cluster). Our models allow us to identify the origin of A754s peculiar X-ray and temperature morphologies, the underlying hydrodynamical processes that shape them, and their future evolution. We make detailed predictions for future high resolution X-ray spectroscopic observations (e.g. ASTRO-E). We discuss general properties of our models which will be characteristic of off-axis mergers. In particular, we find significant non-thermal pressure support within the central region which could bias cluster mass estimates. We find significant angular momentum imparted on the gas distribution in the cluster. We find that mixing of the subcluster gas components is an inefficient process, particularly at large radii. Finally, we find that subsequent dark matter core passages result in an extended relaxation timescale.
127 - S. Aalto , S. Muller , K. Sakamoto 2012
We use high (0.65 x 0.52,(65x52pc)) resolution SubMillimeter Array (SMA) observations to image the CO and 13CO 2-1 line emission of the extreme FIR-excess galaxy NGC 1377. We find bright, complex CO 2-1 line emission in the inner 400 pc of the galaxy. The CO 2-1 line has wings that are tracing a kinematical component which appears perpendicular to that of the line core. Together with an intriguing X-shape of the integrated intensity and dispersion maps, this suggests that the molecular emission of NGC 1377 consists of a disk-outflow system. Lower limits to the molecular mass and outflow rate are M_out(H2)>1e7 Msun and dM/dt>8 Msun/yr. The age of the proposed outflow is estimated to 1.4Myrs, the extent to 200pc and the outflow speed to 140 km/s. The total molecular mass in the SMA map is estimated to M_tot(H2)=1.5e8 Msun (on a scale of 400 pc) while in the inner r=29 pc the molecular mass is M_core(H2)=1.7e7 Msun with a corresponding H2 column density of N(H2)=3.4e23 cm-2 and an average CO 2-1 brightness temperature of 19K. Observing the molecular properties of the FIR-excess galaxy NGC 1377 allows us to probe the early stages of nuclear activity and the onset of feedback in active galaxies. The age of the outflow supports the notion that the current nuclear activity is young - a few Myrs. The outflow may be powered by radiation pressure from a compact, dust enshrouded nucleus, but other driving mechanisms are possible. The buried source may be an AGN or an extremely young (1Myr) compact starburst. Limitations on size and mass lead us to favour the AGN scenario, but further studies are required to settle the issue. In either case, the wind with its implied mass outflow rate will quench the nuclear power source within a very short time of 5-25 Myrs. It is however possible that the gas is unable to escape the galaxy and may eventually fall back onto NGC 1377 again.
Numerical simulations of minor mergers predict little enhancement in the global star formation activity. However, it is still unclear the impact they have on the chemical state of the whole galaxy and on the mass build-up in the galaxy bulge and disc. We present a two-dimensional analysis of NCG 3310, currently undergoing an intense starburst likely caused by a recent minor interaction, using data from the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey (PINGS). With data from a large sample of about a hundred HII regions identified throughout the disc and spiral arms we derive, using strong-line metallicity indicators and direct derivations, a rather flat gaseous abundance gradient. Thus, metal mixing processes occurred, as in observed galaxy interactions. Spectra from PINGS data and additional multiwavelength imaging were used to perform a spectral energy distribution fitting to the stellar emission and a photoionization modelling of the nebulae. The ionizing stellar population is characterized by single populations with a narrow age range (2.5-5 Myr) and a broad range of masses ($10^4-6times10^6 M_odot$). The effect of dust grains in the nebulae is important, indicating that 25-70% of the ultraviolet photons can be absorbed by dust. The ionizing stellar population within the HII regions represents typically a few percent of the total stellar mass. This ratio, a proxy to the specific star formation rate, presents a flat or negative radial gradient. Therefore, minor interactions may indeed play an important role in the mass build-up of the bulge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا