Do you want to publish a course? Click here

Area difference bounds for dissections of a square into an odd number of triangles

332   0   0.0 ( 0 )
 Added by G\\\"unter Rote
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Monskys theorem from 1970 states that a square cannot be dissected into an odd number of triangles of the same area, but it does not give a lower bound for the area differences that must occur. We extend Monskys theorem to constrained framed maps; based on this we can apply a gap theorem from semi-algebraic geometry to a polynomial area difference measure and thus get a lower bound for the area differences that decreases doubly-exponentially with the number of triangles. On the other hand, we obtain the first superpolynomial upper bounds for this problem, derived from an explicit construction that uses the Thue-Morse sequence.



rate research

Read More

We prove that any convex body in the plane can be partitioned into $m$ convex parts of equal areas and perimeters for any integer $mge 2$; this result was previously known for prime powers $m=p^k$. We also discuss possible higher-dimensional generalizations and difficulties of extending our technique to equalizing more than one non-additive function.
Inspired by the classical Riemannian systolic inequality of Gromov we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, where the inequality holds under a topological assumption of ``essentiality, our proofs rely on a combinatorial analogue of that assumption. Under a stronger assumption, expressed in terms of cohomology cup-length, we improve our results quantitatively. We also illustrate our methods in the continuous setting, generalizing and improving quantitatively the Minkowski principle of Balacheff and Karam; a corollary of this result is the extension of the Guth--Nakamura cup-length systolic bound from manifolds to complexes.
We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason - the problem of super resolution of images. We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.
Define the augmented square twist origami crease pattern to be the classic square twist crease pattern with one crease added along a diagonal of the twisted square. In this paper we fully describe the rigid foldability of this new crease pattern. Specifically, the extra crease allows the square twist to rigidly fold in ways the original cannot. We prove that there are exactly four non-degenerate rigid foldings of this crease pattern from the unfolded state.
For a real constant $alpha$, let $pi_3^alpha(G)$ be the minimum of twice the number of $K_2$s plus $alpha$ times the number of $K_3$s over all edge decompositions of $G$ into copies of $K_2$ and $K_3$, where $K_r$ denotes the complete graph on $r$ vertices. Let $pi_3^alpha(n)$ be the maximum of $pi_3^alpha(G)$ over all graphs $G$ with $n$ vertices. The extremal function $pi_3^3(n)$ was first studied by GyH{o}ri and Tuza [Decompositions of graphs into complete subgraphs of given order, Studia Sci. Math. Hungar. 22 (1987), 315--320]. In a recent progress on this problem, Kral, Lidicky, Martins and Pehova [Decomposing graphs into edges and triangles, Combin. Prob. Comput. 28 (2019) 465--472] proved via flag algebras that $pi_3^3(n)le (1/2+o(1))n^2$. We extend their result by determining the exact value of $pi_3^alpha(n)$ and the set of extremal graphs for all $alpha$ and sufficiently large $n$. In particular, we show for $alpha=3$ that $K_n$ and the complete bipartite graph $K_{lfloor n/2rfloor,lceil n/2rceil}$ are the only possible extremal examples for large $n$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا