Do you want to publish a course? Click here

Effects of primordial black holes quantum gravity decay on galaxy clustering

124   0   0.0 ( 0 )
 Added by Alvise Raccanelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been recently suggested that small mass black holes (BHs) may become unstable due to quantum-gravitational effects and eventually decay, producing radiation, on a timescale shorter than the Hawking evaporation time. We argue that the existence of a population of low-mass Primordial Black Holes (PBHs) acting as a fraction of the Universe dark matter component can be used to test proposed models of quantum decay of BHs via their effect on galaxy number counts. We study what constraints future galaxy clustering measurements can set on quantum-gravity parameters governing the BH lifetime and PBH abundance. In case of no detection of such effects, this would rule out either the existence of a non-negligible number of small PBHs, or the BH quantum decay scenario (or both). In case of independent observations of PBHs, the observables discussed here could be used to study the quantum effects that modify the final fate of BHs.



rate research

Read More

Primordial black holes might comprise a significant fraction of the dark matter in the Universe and be responsible for the gravitational wave signals from black hole mergers observed by the LIGO/Virgo collaboration. The spatial clustering of primordial black holes might affect their merger rates and have a significant impact on the constraints on their masses and abundances. We provide some analytical treatment of the primordial black hole spatial clustering evolution, compare our results with some of the existing N-body numerical simulations and discuss the implications for the black hole merger rates. If primordial black holes contribute to a small fraction of the dark matter, primordial black hole clustering is not relevant. On the other hand, for a large contribution to the dark matter, we argue that the clustering may increase the late time Universe merger rate to a level compatible with the LIGO/Virgo detection rate. As for the early Universe merger rate of black hole binaries formed at primordial epochs, clustering alleviates the LIGO/Virgo constraints, but does not evade them.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
Evidences for the primordial black holes (PBH) presence in the early Universe renew permanently. New limits on their mass spectrum challenge existing models of PBH formation. One of the known model is based on the closed walls collapse after the inflationary epoch. Its intrinsic feature is multiple production of small mass PBH which might contradict observations in the nearest future. We show that the mechanism of walls collapse can be applied to produce substantially different PBH mass spectra if one takes into account the classical motion of scalar fields together with their quantum fluctuations at the inflationary stage.
Primordial black holes as dark matter may be generated in single-field models of inflation thanks to the enhancement at small scales of the comoving curvature perturbation. This mechanism requires leaving the slow-roll phase to enter a non-attractor phase during which the inflaton travels across a plateau and its velocity drops down exponentially. We argue that quantum diffusion has a significant impact on the primordial black hole mass fraction making the classical standard prediction not trustable.
We study the effect of dark matter (DM) being encapsulated in primordial black holes (PBHs) on the power spectrum of density fluctuations $P(k)$; we also look at its effect on the abundance of haloes and their clustering. We allow the growth of Poisson fluctuations since matter and radiation equality and study both monochromatic and extended PBH mass distributions. We present updated monochromatic black hole mass constraints by demanding $<10%$ deviations from the $Lambda$ cold dark matter power spectrum at a scale of $k=1$hMpc$^{-1}$. Our results show that PBHs with masses $>10^4$h$^{-1}M_odot$ are excluded from conforming all of the DM in the Universe. We also apply this condition to our extended Press-Schechter (PS) mass functions, and find that the Poisson power is scale dependent even before applying evolution. We find that characteristic masses $M^*leq10^2 $h$^{-1}M_odot$ are allowed, {leaving only two characteristic PBH mass windows of PS mass functions when combining with previous constraints, at $M^*sim10^2$h$^{-1}M_odot$ and $sim10^{-8}$h$^{-1}M_odot$ where all of the DM can be in PBHs. The resulting DM halo mass functions within these windows are similar} to those resulting from cold dark matter made of fundamental particles. However, as soon as the parameters produce unrealistic $P(k)$, the resulting halo mass functions and their bias as a function of halo mass deviate strongly from the behaviour measured in the real Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا