Do you want to publish a course? Click here

Did the 2000 November 8 solar flare accelerate protons to >=40 GeV?

103   0   0.0 ( 0 )
 Added by Ruiguang Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been reported that a 5.7sigma directional muon excess coincident with the 2000 July 14 solar flare was registered by the L3 precision muon spectrometer [Ruiguang Wang, Astroparticle Phys., 31(2009) 149]. Using a same analysis method and similar criteria of event selection, we have analyzed the L3 precision muon spectrometer data during November 2000. The result shows that a 4.7sigma muon excess appeared at a time coincident with the solar flare of 8 of November 2000. This muon excess corresponds to above 40 GeV primary protons which came from a sky cell of solid angle 0.048 sr. The probability of being a background fluctuation is estimated to be about 0.1%. It has been convinced that solar protons could be accelerated to tens of GeV in those Class X solar flares which usually arose solar cosmic ray ground level enhancement (GLE) events. However, whether a Class M solar flare like the non-GLE event of 8 November 2000 may also accelerate solar protons to such high energies? It is interesting and noteworthy.



rate research

Read More

We have found an interesting event registered by the solar neutron telescopes installed at high mountains in Bolivia (5250 m a.s.l.) and Mexico (4600 m a.s.l.). The event was observed November 7th of 2004 in association with a large solar flare of magnitude X2.0. Some features in our registers and in two satellites (GOES 11 and SOHO) reveal the presence of electrons and protons as possible products of neutron decay. Solar neutron decay protons (sndp) were recorded on board ISEE3 satellite in June 3rd, 1982 . On October 19th, 1989, the ground level detectors installed in Goose Bay and Deep River revealed the registration of solar neutron decay protons (sndp). Therefore this is the second example that such an evidence is registered on the Earths surface.
89 - S. Dalla , G. De Nolfo , A. Bruno 2020
Context. Solar Energetic Particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce Ground Level Enhancements (GLEs). The traditional approach to interpreting and modelling GLE observations assumes particle propagation only parallel to the magnetic field lines of interplanetary space, i.e. it is spatially 1D. Recent measurements by PAMELA have characterised SEP properties at 1 AU for the ~100 MeV-1 GeV range at high spectral resolution. Aims. We model the transport of GLE-energy solar protons through the Interplanetary Magnetic Field (IMF) using a 3D approach, to assess the effect of the Heliospheric Current Sheet (HCS) and drifts associated to the gradient and curvature of the Parker spiral. The latter are influenced by the IMF polarity. We derive 1 AU observables and compare the simulation results with data from PAMELA. Methods. We use a 3D test particle model including a HCS. Monoenergetic populations are studied first to obtain a qualitative picture of propagation patterns and numbers of crossings of the 1 AU sphere. Simulations for power law injection are used to derive intensity profiles and fluence spectra at 1 AU. A simulation for a specific event, GLE 71, is used to compare with PAMELA data. Results. Spatial patterns of 1 AU crossings and the average number of crossings are strongly influenced by 3D effects, with significant differences between periods of A+ and A- polarities. The decay time constant of 1 AU intensity profiles varies depending on the polarity and position of the observer, and it is not a simple function of the mean free path as in 1D models. Energy dependent leakage from the injection flux tube is particularly important for GLE energy particles, in many cases resulting in a roll-over in the fluence spectrum.
222 - N. Nishizuka 2013
The Soft X-ray Telescope (SXT) on board Yohkoh revealed that the ejection of X-ray emitting plasmoid is sometimes observed in a solar flare. It was found that the ejected plasmoid is strongly accelerated during a peak in the hard X-ray emission of the flare. In this paper we present an examination of the GOES X 2.3 class flare that occurred at 14.51 UT on 2000 November 24. In the SXT images we found multiple plasmoid ejections with velocities in the range of 250-1500 km/s, which showed blob-like or loop-like structures. Furthermore, we also found that each plasmoid ejection is associated with an impulsive burst of hard X-ray emission. Although some correlation between plasmoid ejection and hard X-ray emission has been discussed previously, our observation shows similar behavior for multiple plasmoid ejection such that each plasmoid ejection occurs during the strong energy release of the solar flare. As a result of temperature-emission measure analysis of such plasmoids, it was revealed that the apparent velocities and kinetic energies of the plasmoid ejections show a correlation with the peak intensities in the hard X-ray emissions.
Solar neutrons have been detected using the neutron monitor located at Mt. Chacaltaya, Bolivia, in association with a large solar flare on November 24, 2000. This is the first detection of solar neutrons by the neutron monitor that have been reported so far in solar cycle 23. The statistical significance of the detection is 5.5 sigma. In this flare, the intense emission of hard X-rays and gamma-rays has been observed by the Yohkoh Hard X-ray Telescope (HXT) and Gamma Ray Spectrometer (GRS), respectively. The production time of solar neutrons is better correlated with those of hard X-rays and gamma-rays than with the production time of soft X-rays. The observations of the solar neutrons on the ground have been limited to solar flares with soft X-ray class greater than X8 in former solar cycles. In this cycle, however, neutrons were detected associated with an X2.3 solar flare on November 24, 2000. This is the first report of the detection of solar neutrons on the ground associated with a solar flare with its X-ray class smaller than X8.
In the standard model of solar flares, a large-scale reconnection current sheet is postulated as the central engine for powering the flare energy release and accelerating particles. However, where and how the energy release and particle acceleration occur remain unclear due to the lack of measurements for the magnetic properties of the current sheet. Here we report the measurement of spatially-resolved magnetic field and flare-accelerated relativistic electrons along a current-sheet feature in a solar flare. The measured magnetic field profile shows a local maximum where the reconnecting field lines of opposite polarities closely approach each other, known as the reconnection X point. The measurements also reveal a local minimum near the bottom of the current sheet above the flare loop-top, referred to as a magnetic bottle. This spatial structure agrees with theoretical predictions and numerical modeling results. A strong reconnection electric field of ~4000 V/m is inferred near the X point. This location, however, shows a local depletion of microwave-emitting relativistic electrons. These electrons concentrate instead at or near the magnetic bottle structure, where more than 99% of them reside at each instant. Our observations suggest that the loop-top magnetic bottle is likely the primary site for accelerating and/or confining the relativistic electrons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا