The Open Flux Problem


Abstract in English

The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Suns photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both MHD and PFSS solutions using fourteen different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding July, 2010. We have found that for all of the model/map combinations, models that have coronal hole areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than coronal holes observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected coronal holes for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Suns magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

Download