Do you want to publish a course? Click here

Electron-Impact Multiple Ionization Cross Sections for Atoms and Ions of Helium through Zinc

89   0   0.0 ( 0 )
 Added by Michael Hahn
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.



rate research

Read More

Aims. Determination of K- and L-shell cross sections of the carbon atom and ions using the modified relativistic binary encounter Bethe (MRBEB) method, a simple analytical scheme based on one atomic parameter that allows determining electron-impact ionization cross sections. The quality of the cross sections calculated with the MRBEB method is shown through: (i) comparison with those obtained with the general ionization processes in the presence of electrons and radiation (GIPPER) code and the flexible atomic code (FAC), and (ii) determination of their effects on the ionic structure and cooling of an optically thin plasma. Results. The three sets of cross sections show deviations among each other in different energy regions. The largest deviations occur near and in the peak maximum. Ion fractions and plasma emissivities of an optically thin plasma that evolves under collisional ionization equilibrium, derived using each set of cross sections, show deviations that decrease with increase in temperature and ionization degree. In spite of these differences, the calculations using the three sets of cross sections agree overall. Conclusions. A simple model like the MRBEB is capable of providing cross sections similar to those calculated with more sophisticated quantum mechanical methods in the GIPPER and FAC codes.
We report ionization cross section measurements for electron impact single ionization (EISI) of Fe^11+$ forming Fe^12+ and electron impact double ionization (EIDI) of Fe^11+ forming Fe^13+. The measurements cover the center-of-mass energy range from approximately 230 eV to 2300 eV. The experiment was performed using the heavy ion storage ring TSR located at the Max-Planck-Institut fur Kernphysik in Heidelberg, Germany. The storage ring approach allows nearly all metastable levels to relax to the ground state before data collection begins. We find that the cross section for single ionization is 30% smaller than was previously measured in a single pass experiment using an ion beam with an unknown metastable fraction. We also find some significant differences between our experimental cross section for single ionization and recent distorted wave (DW) calculations. The DW Maxwellian EISI rate coefficient for Fe^11+ forming Fe^12+ may be underestimated by as much as 25% at temperatures for which Fe^11+ is abundant in collisional ionization equilibrium. This is likely due to the absence of 3s excitation-autoionization (EA) in the calculations. However, a precise measurement of the cross section due to this EA channel was not possible because this process is not distinguishable experimentally from electron impact excitation of an n=3 electron to levels of n > 44 followed by field ionization in the charge state analyzer after the interaction region. Our experimental results also indicate that the double ionization cross section is dominated by the indirect process in which direct single ionization of an inner shell 2l electron is followed by autoionization resulting in a net double ionization.
We implement a full nonlinear optimization method to fit continuum states with complex Gaussians. The application to a set of regular scattering Coulomb functions allows us to validate the numerical feasibility, to explore the range of convergence of the approach, and to demonstrate the relative superiority of complex over real Gaussian expansions. We then consider the photoionization of atomic hydrogen, and ionization by electron impact in the first Born approximation, for which the closed form cross sections serve as a solid benchmark. Using the proposed complex Gaussian representation of the continuum combined with a real Gaussian expansion for the initial bound state, all necessary matrix elements within a partial wave approach become analytical. The successful numerical comparison illustrates that the proposed all-Gaussian approach works efficiently for ionization processes of one-center targets.
In an ultracold, optically trapped mixture of $^{87}$Rb and metastable triplet $^4$He atoms we have studied trap loss for different spin-state combinations, for which interspecies Penning ionization is the main two-body loss process. We observe long trapping lifetimes for the purely quartet spin-state combination, indicating strong suppression of Penning ionization loss by at least two orders of magnitude. For the other spin-mixtures we observe short lifetimes that depend linearly on the doublet character of the entrance channel. We compare the extracted loss rate coefficient with recent predictions of multichannel quantum-defect theory for reactive collisions involving a strong exothermic loss channel and find near-universal loss for doublet scattering. Our work demonstrates control of reactive collisions by internal atomic state preparation.
Absolute cross sections for m-fold photoionization (m=1,...,6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of +- 0.2 eV. The cross section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross sections have been carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic Multi-Configuration Dirac Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross sections are in good agreement with each other and with the experimental results. In addition, the complex deexcitation cascades after the creation of inner-shell holes in the Fe+ ion have been tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا