No Arabic abstract
We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin ice candidate Pr2Zr2O7. Since Pr is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin excitation spectra. Taking advantage of mean field and spin dynamics simulations, we argue that the randomness in Pr2Zr2O7, promotes a new state of matter, which is disordered, yet characterized by short range antiferroquadrupolar correlations, and from which emerge spin-ice like excitations. This study thus opens an original research route in the field of quantum spin ice.
Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice compounds, such as artificial magnetostatics, manifesting as Coulombic power-law spin correlations and particles behaving as diffusive magnetic monopoles. In this paper, we address quantum spin ice, giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the pyrochlore structure, and in particular discuss Yb2Ti2O7 and extract its full set of Hamiltonian parameters from high field inelastic neutron scattering experiments. We show that fluctuations in Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic Quantum Spin Liquid ground state in low field and host an unusual quantum critical point at larger fields. This appears consistent with puzzling features in prior experiments on Yb2Ti2O7. Thus Yb2Ti2O7 is the first quantum spin liquid candidate in which the Hamiltonian is quantitatively known.
A promising route to realize entangled magnetic states combines geometrical frustration with quantum-tunneling effects. Spin-ice materials are canonical examples of frustration, and Ising spins in a transverse magnetic field are the simplest many-body model of quantum tunneling. Here, we show that the tripod kagome lattice material Ho3Mg2Sb3O14 unites an ice-like magnetic degeneracy with quantum-tunneling terms generated by an intrinsic splitting of the Ho3+ ground-state doublet, realizing a frustrated transverse Ising model. Using neutron scattering and thermodynamic experiments, we observe a symmetry-breaking transition at T*~0.32 K to a remarkable quantum state with three peculiarities: a continuous magnetic excitation spectrum down to T~0.12K; a macroscopic degeneracy of ice-like states; and a fragmentation of the spin into periodic and aperiodic components strongly affected by quantum fluctuations. Our results establish that Ho3Mg2Sb3O14 realizes a spin-fragmented state on the kagome lattice, with intrinsic quantum dynamics generated by a homogeneous transverse field.
Quantum spin ice is an appealing proposal of a quantum spin liquid - systems where the magnetic moments of the constituent electron spins evade classical long-range order to form an exotic state that is quantum entangled and coherent over macroscopic length scales. Such phases are at the edge of our current knowledge in condensed matter as they go beyond the established paradigm of symmetry-breaking order and associated excitations. Neutron scattering experiments on the pyrochlore material Pr$_2$Hf$_2$O$_7$ reveal signatures of a quantum spin ice state that were predicted by theory.
We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
The original proposal to achieve superconductivity by starting from a quantum spin-liquid (QSL) and doping it with charge carriers, as proposed by Anderson in 1987, has yet to be realized. Here we propose an alternative strategy: use a QSL as a substrate for heterostructure growth of metallic films to design exotic superconductors. By spatially separating the two key ingredients of superconductivity, i.e., charge carriers (metal) and pairing interaction (QSL), the proposed setup naturally lands on the parameter regime conducive to a controlled theoretical prediction. Moreover, the proposed setup allows us to customize electron-electron interaction imprinted on the metallic layer. The QSL material of our choice is quantum spin ice well-known for its emergent gauge-field description of spin frustration. Assuming the metallic layer forms an isotropic single Fermi pocket, we predict that the coupling between the emergent gauge-field and the electrons of the metallic layer will drive topological odd-parity pairing. We further present guiding principles for materializing the suitable heterostructure using ab initio calculations and describe the band structure we predict for the case of Y$_2$Sn$_{2-x}$Sb$_x$O$_7$ grown on the (111) surface of Pr$_2$Zr$_2$O$_7$. Using this microscopic information, we predict topological odd-parity superconductivity at a few Kelvin in this heterostructure, which is comparable to the $T_c$ of the only other confirmed odd-parity superconductor Sr$_2$RuO$_4$.