No Arabic abstract
We describe a new method for determining proper motions of extended objects, and a pipeline developed for the application of this method. We then apply this method to an analysis of four epochs of [S~II] HST images of the HH~1 jet (covering a period of $sim 20$~yr). We determine the proper motions of the knots along the jet, and make a reconstruction of the past ejection velocity time-variability (assuming ballistic knot motions). This reconstruction shows an acceleration of the ejection velocities of the jet knots, with higher velocities at more recent times. This acceleration will result in an eventual merging of the knots in $sim 450$~yr and at a distance of $sim 80$ from the outflow source, close to the present-day position of HH~1.
(abridged) The HH 80/81/80N jet extends from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by IRAS 18162-2048 associated with a massive young stellar object. We report 6 cm JVLA observations that, compared with previous 6 cm VLA observations carried out in 1989, allow us to derive proper motions of the HH 80, HH 81 and HH 80N radio knots located about 2.5 pc away in projection from the powering source. For the first time, we measure proper motions of the optically obscured HH 80N object providing evidence that HH 81, 80 and 80N are associated with the same radio-jet. We derived tangential velocities of these HH objects between 260 and 350 km/s, significantly lower than those for the radio knots of the jet close to the powering source (600-1400 km/s) derived in a previous work, suggesting that the jet material is slowing down due to a strong interaction with the ambient medium. The HH 80 and HH 80N emission at 6 cm is, at least in part, probably synchrotron radiation produced by relativistic electrons in a magnetic field of 1 mG. If these electrons are accelerated in a reverse adiabatic shock, we estimate a jet total density of $lesssim1000$ cm$^{-3}$. All these features are consistent with a jet emanating from a high mass protostar and make evident its capability of accelerating particles up to relativistic velocities.
We present measurements of internal proper motions at more than five hundred positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 years. Comparison of the two observations shows clearly the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, and in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, as the more reliable. We go on to perform a criss-cross mapping analysis on the proper motion vectors which helps in the interpretation of the velocity pattern. Combining our results on the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula as 1300 pc.
We present new z- and H-band photometry and proper motion measurements for the five candidate very-low-mass T-type objects we recently proposed to be members of the nearest OB association to the Sun, Upper Scorpius. These new data fail to corroborate our prior conclusions regarding their spectral types and affiliation with the Upper Scorpius population. We conclude that we may be in presence of a turnover in the mass function of Upper Sco taking place below 10-4 Jupiter masses, depending on the age assigned to Upper Sco and the models used.
With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalogue will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is $sim$14.3 years. To standardize the $BVI$ photometry, Stetsons secondary standard stars are used. The CCD data with an epoch gap of $sim$14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than $sim$0.8 mas~yr$^{-1}$ for stars having $V<$18 mag that increases up to $sim$1.5 mas~yr$^{-1}$ for stars with $18<V<20$ mag. Kinematic membership probabilities are calculated using proper motions for stars brighter than $Vsim$20 mag. An electronic catalogue of positions, relative PMs, $BVI$ magnitudes and membership probabilities in $sim$19.7$times$17 arcmin$^2$ region of NGC 3201 is presented. We use our membership catalogue to identify probable cluster members among the known variables and $X$-ray sources in the direction of NGC 3201.
The Vista Variables in the Via Lactea survey (VVV) is a near-IR ESO public survey devoted to study the Galactic bulge and southern inner disk covering 560 deg$^2$ on the sky. This multi-epoch and multi-wavelength survey has helped to discover the first brown dwarfs towards the Galactic center, one of the most crowded areas in the sky, and several low mass companions to known nearby stars. The multi-epoch information has allowed us to calculate precise parallaxes, and put some constraints on the long-term variability of these objects. We expect to discover above a hundred more brown dwarfs. The VVV survey makes a great synergy with the Gaia mission, as both will observe for a few years the same fields at different wavelengths, and as VVV is more sensitive to very red objects such as brown dwarfs, VVV might provide unique candidates to follow up eventual astrometric microlensing events thank to the exquisite astrometric precision of the Gaia mission.