Strong bonds and far-from-equilibrium conditions minimize errors in lattice-gas growth


Abstract in English

We use computer simulation to study the layer-by-layer growth of particle structures in a lattice gas, taking the number of incorporated vacancies as a measure of the quality of the grown structure. By exploiting a dynamic scaling relation between structure quality in and out of equilibrium, we determine that the best quality of structure is obtained, for fixed observation time, with strong interactions and far-from-equilibrium growth conditions. This result contrasts with the usual assumption that weak interactions and mild nonequilibrium conditions are the best way to minimize errors during assembly.

Download