Do you want to publish a course? Click here

Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues

219   0   0.0 ( 0 )
 Added by Joseph Zuntz
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope survey region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$sigma$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.



rate research

Read More

74 - M. Gatti , E. Sheldon , A. Amon 2020
We present and characterise the galaxy shape catalogue from the first 3 years of Dark Energy Survey (DES) observations, over an effective area of ~4143 deg$^2$ of the southern sky. We describe our data analysis process and our self-calibrating shear measurement pipeline METACALIBRATION, which builds and improves upon the pipeline used in the DES Year 1 analysis in several aspects. The DES Year 3 weak-lensing shape catalogue consists of 100,204,026 galaxies, measured in the $riz$ bands, resulting in a weighted source number density of $n_{rm eff} = 5.59$ gal/arcmin$ ^{2}$ and corresponding shape noise $sigma_e = 0.261$. We perform a battery of internal null tests on the catalogue, including tests on systematics related to the point-spread function (PSF) modelling, spurious catalogue B-mode signals, catalogue contamination, and galaxy properties.
101 - C. Chang , A. Pujol , B. Mawdsley 2017
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $approx1,500 $deg$^2$, covering a comoving volume of $approx10 $Gpc$^3$. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogs, Metacalibration and Im3shape, with sources at redshift $0.2<z<1.3,$ and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal-to-noise in the E-mode and the B-mode map is $sim$1.5 ($sim$2) when smoothed with a Gaussian filter of $sigma_{G}=30$ (80) arcminutes. The second and third moments of the convergence $kappa$ in the maps are in agreement with simulations. We also find no significant correlation of $kappa$ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation with different foreground tracers of mass and (2) exploration of the largest peaks and voids in the maps.
123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split into five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
83 - S. Avila , M. Crocce , A.J. Ross 2017
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a $2LPT$ density field with an exponential bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range $0.45<z<1.4$. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a textit{double-skewed-Gaussian} curve fitted to the data. We also introduce a hybrid HOD-HAM model with two free parameters that are adjusted to achieve a galaxy bias evolution $b(z_{rm ph})$ that matches the data at the 1-$sigma$ level in the range $0.6<z_{rm ph}<1.0$. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function $ w(theta)$, the comoving transverse separation clustering $xi_{mu<0.8}(s_{perp})$ and the angular power spectrum $C_ell$.
We perform a joint analysis of the counts and weak lensing signal of redMaPPer clusters selected from the Dark Energy Survey (DES) Year 1 dataset. Our analysis uses the same shear and source photometric redshifts estimates as were used in the DES combined probes analysis. Our analysis results in surprisingly low values for $S_8 =sigma_8(Omega_{rm m}/0.3)^{0.5}= 0.65pm 0.04$, driven by a low matter density parameter, $Omega_{rm m}=0.179^{+0.031}_{-0.038}$, with $sigma_8-Omega_{rm m}$ posteriors in $2.4sigma$ tension with the DES Y1 3x2pt results, and in $5.6sigma$ with the Planck CMB analysis. These results include the impact of post-unblinding changes to the analysis, which did not improve the level of consistency with other data sets compared to the results obtained at the unblinding. The fact that multiple cosmological probes (supernovae, baryon acoustic oscillations, cosmic shear, galaxy clustering and CMB anisotropies), and other galaxy cluster analyses all favor significantly higher matter densities suggests the presence of systematic errors in the data or an incomplete modeling of the relevant physics. Cross checks with X-ray and microwave data, as well as independent constraints on the observable--mass relation from SZ selected clusters, suggest that the discrepancy resides in our modeling of the weak lensing signal rather than the cluster abundance. Repeating our analysis using a higher richness threshold ($lambda ge 30$) significantly reduces the tension with other probes, and points to one or more richness-dependent effects not captured by our model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا