Do you want to publish a course? Click here

Diffusion, Influence and Best-Response Dynamics in Networks: An Action Model Approach

54   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Threshold models and their dynamics may be used to model the spread of `behaviors in social networks. Regarding such from a modal logical perspective, it is shown how standard update mechanisms may be emulated using action models -- graphs encoding agents decision rules. A small class of action models capturing the possible sets of decision rules suitable for threshold models is identified, and shown to include models characterizing best-response dynamics of both coordination and anti-coordination games played on graphs.



rate research

Read More

While game theory has been transformative for decision-making, the assumptions made can be overly restrictive in certain instances. In this work, we focus on some of the assumptions underlying rationality such as mutual consistency and best-response, and consider ways to relax these assumptions using concepts from level-$k$ reasoning and quantal response equilibrium (QRE) respectively. Specifically, we provide an information-theoretic two-parameter model that can relax both mutual consistency and best-response, but can recover approximations of level-$k$, QRE, or typical Nash equilibrium behaviour in the limiting cases. The proposed approach is based on a recursive form of the variational free energy principle, representing self-referential games as (pseudo) sequential decisions. Bounds in player processing abilities are captured as information costs, where future chains of reasoning are discounted, implying a hierarchy of players where lower-level players have fewer processing resources.
220 - Joerg Rothe , Lena Schend 2012
Walsh [Wal10, Wal09], Davies et al. [DKNW10, DKNW11], and Narodytska et al. [NWX11] studied various voting systems empirically and showed that they can often be manipulated effectively, despite their manipulation problems being NP-hard. Such an experimental approach is sorely missing for NP-hard control problems, where control refers to attempts to tamper with the outcome of elections by adding/deleting/partitioning either voters or candidates. We experimentally tackle NP-hard control problems for Bucklin and fallback voting. Among natural voting systems with efficient winner determination, fallback voting is currently known to display the broadest resistance to control in terms of NP-hardness, and Bucklin voting has been shown to behave almost as well in terms of control resistance [ER10, EPR11, EFPR11]. We also investigate control resistance experimentally for plurality voting, one of the first voting systems analyzed with respect to electoral control [BTT92, HHR07]. Our findings indicate that NP-hard control problems can often be solved effectively in practice. Moreover, our experiments allow a more fine-grained analysis and comparison-across various control scenarios, vote distribution models, and voting systems-than merely stating NP-hardness for all these control problems.
We identify a subproblem of the model-checking problem for the epistemic mu-calculus which is decidable. Formulas in the instances of this subproblem allow free variables within the scope of epistemic modalities in a restricted form that avoids embodying any form of common knowledge. Our subproblem subsumes known decidable fragments of epistemic CTL/LTL, may express winning strategies in two-player games with one player having imperfect information and non-observable objectives, and, with a suitable encoding, decidable instances of the model-checking problem for ATLiR.
Suppose that an $m$-simplex is partitioned into $n$ convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance $epsilon$ from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant $m$ uses $poly(n, log left( frac{1}{epsilon} right))$ queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant $n$ uses $poly(m, log left( frac{1}{epsilon} right))$ queries. We show via Kakutanis fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.
Inspired by real world examples, e.g. the Internet, researchers have introduced an abundance of strategic games to study natural phenomena in networks. Unfortunately, almost all of these games have the conceptual drawback of being computationally intractable, i.e. computing a best response strategy or checking if an equilibrium is reached is NP-hard. Thus, a main challenge in the field is to find tractable realistic network formation models. We address this challenge by investigating a very recently introduced model by Goyal et al. [WINE16] which focuses on robust networks in the presence of a strong adversary who attacks (and kills) nodes in the network and lets this attack spread virus-like to neighboring nodes and their neighbors. Our main result is to establish that this natural model is one of the few exceptions which are both realistic and computationally tractable. In particular, we answer an open question of Goyal et al. by providing an efficient algorithm for computing a best response strategy, which implies that deciding whether the game has reached a Nash equilibrium can be done efficiently as well. Our algorithm essentially solves the problem of computing a minimal connection to a network which maximizes the reachability while hedging against severe attacks on the network infrastructure and may thus be of independent interest.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا