Hysteresis in the transfer characteristics of MoS2 transistors


Abstract in English

We investigate the origin of the hysteresis observed in the transfer characteristics of back-gated field-effect transistors with an exfoliated MoS2 channel. We find that the hysteresis is strongly enhanced by increasing either gate voltage, pressure, temperature or light intensity. Our measurements reveal a step-like behavior of the hysteresis around room temperature, which we explain as water-facilitated charge trapping at the MoS2/SiO2 interface. We conclude that intrinsic defects in MoS2, such as S vacancies, which result in effective positive charge trapping, play an important role, besides H2O and O2 adsorbates on the unpassivated device surface. We show that the bistability associated to the hysteresis can be exploited in memory devices.

Download