Gaia17biu/SN 2017egm in NGC 3191: The closest hydrogen-poor superluminous supernova to date is in a normal, massive, metal-rich spiral galaxy


Abstract in English

Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a normal spiral galaxy (NGC 3191) in terms of stellar mass (several times 10^10 M_sun) and metallicity (roughly Solar). At redshift z=0.031, Gaia17biu is also the lowest redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I while its peak luminosity (M_g = -21 mag) is substantially lower than Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ~0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with <5.4x10^26 erg/s/Hz (at 10 GHz), which is almost a factor of 40 better than previous upper limits and one of the few measured at an early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSNe-I with known populations of gamma-ray burst (GRB) like central engines.

Download