Do you want to publish a course? Click here

The Casimir-Polder interaction between two neutrons and possible relevance to tetraneutron states

65   0   0.0 ( 0 )
 Added by Mahir S. Hussein
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present a summary of our recent publication concerning the derivation of the extended Casimir-Polder dispersive interaction between two neutrons. Dynamical polarizations of the neutrons, recently derived within Chiral Effective Theory are used for the purpose. An account of the higher frequency/energy behavior of these entities related to the opening of one-pion production channel and the excitation of the $Delta$ resonance are taken into consideration in our derivation of the CP interaction. The neutron-neutron system in free space is treated in details so are the neutron-wall and the wall-neutron-wall systems. The case of tetraneutron (a 4 neutron system) in a resonant state is then briefly considered. The 4n CP interaction is evaluated to assess its potential relevance to the ongoing debate concerning the nature of the tetraneutron.



rate research

Read More

127 - Renato Higa , James F. Babb , 2018
In this work we present results of the dipole-dipole interactions between two neutrons, a neutron and a conducting wall, and a neutron between two walls. As input, we use dynamical electromagnetic dipole polarizabilities fitted to chiral EFT results up to the pion production threshold and at the onset of the Delta resonance. Our work can be relevant to the physics of confined ultracold neutrons inside bottles.
139 - Zhi-Tao Lu , Han-Yu Jiang , Jun He 2020
Recently, a hint for dibaryon $NDelta(D_{21})$ was observed at WASA-AT-COSY with a mass about $30pm10$ MeV below the $NDelta$ threshold. It has a relatively small binding energy compared with the $d^*(2380)$ and a width close to the width of the $Delta$ baryon, which suggests that it may be a dibaryon in a molecular state picture. In this work, we study the possible $S$-wave molecular states from the $NDelta$ interaction within the quasipotential Bethe-Salpeter equation approach. The interaction is described by exchanging $pi$, $rho$, and $omega$ mesons. With reasonable parameters, a $D_{21}$ bound state can be produced from the interaction. The results also suggest that there may exist two more possible $D_{12}$ and $D_{22}$ states with smaller binding energies. The $pi$ exchange is found to play the most important role to bind two baryons to form the molecular states. An experimental search for possible $NDelta(D_{12})$ and $NDelta(D_{22})$ states will be helpful for understanding the hint of the dibaryon $NDelta(D_{21})$.
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capassos group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be surveyed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder.
Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. Here we perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P_{3/2}) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its non-resonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step towards atom trapping in the extreme near field, possibly without the use of external fields.
Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the possibility of technological application. The general subject has a long history, going back to the self-repulsion of a conducting spherical shell and the repulsion between a perfect electric conductor and a perfect magnetic conductor. Recently it has been observed that repulsion can be achieved between ordinary conducting bodies, provided sufficient anisotropy is present. For example, an anisotropic polarizable atom can be repelled near an aperture in a conducting plate. Here we provide new examples of this effect, including the repulsion on such an atom moving on a trajectory nonintersecting a conducting cylinder; in contrast, such repulsion does not occur outside a sphere. Classically, repulsion does occur between a conducting ellipsoid placed in a uniform electric field and an electric dipole. The Casimir-Polder force between an anisotropic atom and an anisotropic dielectric semispace does not exhibit repulsion. The general systematics of repulsion are becoming clear.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا