Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and the volume of the random convex hull of $X_1,ldots,X_{r+1}$ are established in high dimensions, that is, as $r$ and $n$ tend to infinity simultaneously. This includes, Berry-Esseen-type central limit theorems, log-normal limit theorems, moderate and large deviations. Also different types of mod-$phi$ convergence are derived. The results heavily depend on the asymptotic growth of $r$ relative to $n$. For example, we prove that the fluctuations of the volume of the simplex are normal (respectively, log-normal) if $r=o(n)$ (respectively, $rsim alpha n$ for some $0 < alpha < 1$).