Do you want to publish a course? Click here

A Study of Multi$Lambda$ hypernuclei within Spherical Relativistic Mean-field Approach

87   0   0.0 ( 0 )
 Added by Asloob Ahmad Rather
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

This research article is a follow up of earlier work by M. Ikram et al., reported in International Journal of Modern Physics E {bf{25}}, 1650103 (2016) wherein we searched for $Lambda$ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (ie.$^{16}O - ^{208}Pb$) by injecting $Lambda$s into them. In present manuscript, working within the state-of-art relativistic mean field theory with inclusion of $Lambda N$ and $LambdaLambda$ interaction in hypernuclei using the predicted doubly magic nucleonic cores ie. $^{292}$120, $^{304}$120, $^{360}$132, $^{370}$132, $^{336}$138, $^{396}$138 of elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicity are made on the basis of one-, two-$Lambda$ separation energy ($S_Lambda, S_{2Lambda}$) and two lambda shell gaps ($delta_{2Lambda}$) in multi-$Lambda$ hypernuclei. The calculations suggest that the $Lambda$ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the $Lambda$ shell closures after introducing the $Lambda$s in elusive superheavy nucleonic cores. Moreover, in support of $Lambda$ shell closure the investigation of $Lambda$ pairing energy and effective $Lambda$ pairing gap has also been made. The appearance of new lambda shell closures other than the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of spin-orbit coupling in hypernuclei compared to normal nuclei.

rate research

Read More

84 - Yusuke Tanimura 2018
Deformed multi-$Lambda$ hypernuclei are studied within a relativistic mean-field model. In this paper, we take some $N=Z$ hyper isotope chains, i.e., $^{8+n}_{ nLambda}{rm Be}$, $^{20+n}_{ nLambda}{rm Ne}$, and $^{28+n}_{ nLambda}{rm Si}$ systems where $n = 2$, $4$ for Be, and $n = 2$, $8$ for Ne and Si. A sign of two-$^6_{2Lambda}$He cluster structure is observed in the two-body correlation in $^{12}_{4Lambda}$Be. In the Ne hyper isotopes, the deformation is slightly reduced by addition of $Lambda$ hyperons whereas it is significantly reduced or even disappears in the Si hyper isotopes.
Based on relativistic mean field (RMF) models, we study finite $Lambda$-hypernuclei and massive neutron stars. The effective $N$-$N$ interactions PK1 and TM1 are adopted, while the $N$-$Lambda$ interactions are constrained by reproducing the binding energy of $Lambda$-hyperon at $1s$ orbit of $^{40}_{Lambda}$Ca. It is found that the $Lambda$-meson couplings follow a simple relation, indicating a fixed $Lambda$ potential well for symmetric nuclear matter at saturation densities, i.e., around $V_{Lambda} = -29.786$ MeV. With those interactions, a large mass range of $Lambda$-hypernuclei can be well described. Furthermore, the masses of PSR J1614-2230 and PSR J0348+0432 can be attained adopting the $Lambda$-meson couplings $g_{sigmaLambda}/g_{sigma N}gtrsim 0.73$, $g_{omegaLambda}/g_{omega N}gtrsim 0.80$ for PK1 and $g_{sigmaLambda}/g_{sigma N}gtrsim 0.81$, $g_{omegaLambda}/g_{omega N}gtrsim 0.90$ for TM1, respectively. This resolves the Hyperon Puzzle without introducing any additional degrees of freedom.
We calculate the binding energy of two $Lambda$ hyperons bound to a nuclear core within the relativistic mean field theory. The starting point is a two-body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. We evaluate the 2 $Lambda$ correlation energy and estimate the contribution of the $sigma^*$ and $Phi$ mesons, acting solely between hyperons, to the bond energy $Delta{B_{LambdaLambda}}$ of $^6_{LambdaLambda}He$, $^{10}_{LambdaLambda}Be$ and $^{13}_{LambdaLambda}B$. Predictions of the $Delta{B_{LambdaLambda}}$ A dependence are made for heavier $Lambda$-hypernuclei.
For the first time, we apply the temperature dependent relativistic mean field (TRMF) model to study the ternary fission of heavy nucleus using level density approach. The probability of yields of a particular fragment is obtained by evaluating the convolution integrals which employ the excitation energy and the level density parameter for a given temperature calculated within the TRMF formalism. To illustrate, we have considered the ternary fissions in 252Cf, 242Pu and 236U with fixed third fragment A3 = 48Ca, 20O and 16O respectively. The relative yields are studied for the temperatures T = 1, 2 and 3 MeV. For the comparison, the relative yields are also calculated from the single particle energies of the finite range droplet model (FRDM). In general, the larger phase space for the ternary fragmentation is observed indicating that such fragmentations are most probable ones. For T = 2 and 3 MeV, the Sn + Ni + Ca is the most probable combination for the nucleus 252Cf. However, for the nuclei 242Pu and 236U, the maximum fragmentation yields at T = 2 MeV differ from those at T = 3 MeV. For T = 3 MeV, the closed shell (Z = 8) light mass fragments with its corresponding partners has larger yield values. But, at T = 2 MeV Si/P/S are favorable fragments with the corresponding partners. It is noticed that the symmetric binary fragmentation along with the fixed third fragment for 242Pu and 236U are also favored at T = 1 MeV. The temperature dependence of the nuclear shape and the single particle energies are also discussed.
91 - H. J. Xia , X. Y. Wu , H. Mei 2018
We develop both relativistic mean field and beyond approaches for hypernuclei with possible quadrupole-octupole deformation or pear-like shapes based on relativistic point-coupling energy density functionals. The symmetries broken in the mean-field states are recovered with parity, particle-number, and angular momentum projections. We take $^{21}_Lambda$Ne as an example to illustrate the method, where the $Lambda$ hyperon is put on one of the two lowest-energy orbits (labeled as $Lambda_s, Lambda_p$), respectively. We find that the $Lambda$ hyperon in both cases disfavors the formation of a reflection-asymmetric molecular-like $^{16}$O$+alpha$ structure in $^{20}$Ne, which is consistent with the Nilsson diagram for the hyperon in $(beta_2, beta_3)$ deformation plane. In particular, we show that the negative-parity states with the configuration $^{20}$Ne($K^pi=0^-)otimes Lambda_s$ are close in energy to those with the configuration $^{20}$Ne($K^pi=0^+)otimes Lambda_p$, even though they have very different structures. The $Lambda_s$ ($Lambda_p$) becomes more and more concentrated around the bottom (top) of the pear with the increase of octupole deformation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا