Reconfiguration of quantum states in $mathcal PT$-symmetric quasi-one dimensional lattices


Abstract in English

We demonstrate mesoscopic transport through quantum states in quasi-1D lattices maintaining the combination of parity and time-reversal symmetries by controlling energy gain and loss. We investigate the phase diagram of the non-Hermitian system where transitions take place between unbroken and broken $mathcal{PT}$-symmetric phases via exceptional points. Quantum transport in the lattice is measured only in the unbroken phases in the energy band-but not in the broken phases. The broken phase allows for spontaneous symmetry-broken states where the cross-stitch lattice is separated into two identical single lattices corresponding to conditionally degenerate eigenstates. These degeneracies show a lift-up in the complex energy plane, caused by the non-Hermiticity with $mathcal{PT}$-symmetry.

Download