Do you want to publish a course? Click here

MOSCAB: A geyser-concept bubble chamber to be used in a dark matter search

65   0   0.0 ( 0 )
 Added by Walter Fulgione
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MOSCAB experiment (Materia OSCura A Bolle) uses the geyser technique, a variant of the superheated liquid technique of extreme simplicity. Operating principles of the new dark matter detector and technical solutions of the device are reported in detail. First results obtained in a series of test runs taken in laboratory demonstrate that we have successfully built and tested a geyser-concept bubble chamber that can be used in particle physics, especially in dark matter searches, and that we are ready to move underground for extensive data taking.



rate research

Read More

183 - E. Behnke , J. Behnke , S.J. Brice 2012
New data are reported from the operation of a 4.0 kg CF$_{3}$I bubble chamber in the 6800-foot-deep SNOLAB underground laboratory. The effectiveness of ultrasound analysis in discriminating alpha-decay background events from single nuclear recoils has been confirmed, with a lower bound of $>$99.3% rejection of alpha-decay events. Twenty single nuclear recoil event candidates and three multiple bubble events were observed during a total exposure of 553 kg-days distributed over three different bubble nucleation thresholds. The effective exposure for single bubble recoil-like events was 437.4 kg-days. A neutron background internal to the apparatus, of known origin, is estimated to account for five single nuclear recoil events and is consistent with the observed rate of multiple bubble events. This observation provides world best direct detection constraints on WIMP-proton spin-dependent scattering for WIMP masses $>$20 GeV/c$^{2}$ and demonstrates significant sensitivity for spin-independent interactions.
New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C$_3$F$_8$ located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60 C$_3$F$_8$ exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than 1 event per month. A blind analysis of an efficiency-corrected 1167-kg-day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the WIMP-proton spin-dependent cross section at 3.4 $times$ 10$^{-41}$ cm$^2$ for a 30-GeV$thinspace$c$^{-2}$ WIMP, more than one order of magnitude improvement from previous PICO results.
A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic Seitz thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a $^{252}$Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is $19pm6$ keV (1$sigma$ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of $6.3times10^{-7}$ bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF$_3$I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.
This document complements and completes what was submitted last year to PAC45 as an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016. Following the suggestions contained in the PAC45 report, in coordination with the lab, we ran a test to assess the beam-related backgrounds and validate the simulation framework used to design the BDX experiment. Using a common Monte Carlo framework for the test and the proposed experiment, we optimized the selection cuts to maximize the reach considering simultaneously the signal, cosmic-ray background (assessed in Catania test with BDX-Proto) and beam-related backgrounds (irreducible NC and CC neutrino interactions as determined by simulation). Our results confirmed what was presented in the original proposal: with 285 days of a parasitic run at 65 $mu$A (corresponding to $10^{22}$ EOT) the BDX experiment will lower the exclusion limits in the case of no signal by one to two orders of magnitude in the parameter space of dark-matter coupling versus mass.
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this static magnetic field, and therefore improve the sensitivity of such searches in the low frequency lumped-circuit limit. Using gadolinium iron garnet toroids at temperature 4.2 K results in a factor of 4 enhancement compared to an air-core toroidal design. The enhancement is limited by magnetic saturation. Correlation of signals from three such toroids allows efficient rejection of systematics due to electromagnetic interference. The sensitivity of a centimeter-scale axion dark matter search based on this approach is on the order of $g_{agammagamma}approx10^{-9}$ GeV$^{-1}$ after 8 hours of data collection for axion masses near $10^{-10}$ eV. This approach may substantially extend the sensitivity reach of large-volume lumped element axion dark matter searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا