Do you want to publish a course? Click here

Dynamic Variable Selection with Spike-and-Slab Process Priors

86   0   0.0 ( 0 )
 Added by Veronika Rockova
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We address the problem of dynamic variable selection in time series regression with unknown residual variances, where the set of active predictors is allowed to evolve over time. To capture time-varying variable selection uncertainty, we introduce new dynamic shrinkage priors for the time series of regression coefficients. These priors are characterized by two main ingredients: smooth parameter evolutions and intermittent zeroes for modeling predictive breaks. More formally, our proposed Dynamic Spike-and-Slab (DSS) priors are constructed as mixtures of two processes: a spike process for the irrelevant coefficients and a slab autoregressive process for the active coefficients. The mixing weights are themselves time-varying and depend on lagged values of the series. Our DSS priors are probabilistically coherent in the sense that their stationary distribution is fully known and characterized by spike-and-slab marginals. For posterior sampling over dynamic regression coefficients, model selection indicators as well as unknown dynamic residual variances, we propose a Dynamic SSVS algorithm based on forward-filtering and backward-sampling. To scale our method to large data sets, we develop a Dynamic EMVS algorithm for MAP smoothing. We demonstrate, through simulation and a topical macroeconomic dataset, that DSS priors are very effective at separating active and noisy coefficients. Our fast implementation significantly extends the reach of spike-and-slab methods to large time series data.



rate research

Read More

An important task in building regression models is to decide which regressors should be included in the final model. In a Bayesian approach, variable selection can be performed using mixture priors with a spike and a slab component for the effects subject to selection. As the spike is concentrated at zero, variable selection is based on the probability of assigning the corresponding regression effect to the slab component. These posterior inclusion probabilities can be determined by MCMC sampling. In this paper we compare the MCMC implementations for several spike and slab priors with regard to posterior inclusion probabilities and their sampling efficiency for simulated data. Further, we investigate posterior inclusion probabilities analytically for different slabs in two simple settings. Application of variable selection with spike and slab priors is illustrated on a data set of psychiatric patients where the goal is to identify covariates affecting metabolism.
We propose a Bayesian procedure for simultaneous variable and covariance selection using continuous spike-and-slab priors in multivariate linear regression models where q possibly correlated responses are regressed onto p predictors. Rather than relying on a stochastic search through the high-dimensional model space, we develop an ECM algorithm similar to the EMVS procedure of Rockova & George (2014) targeting modal estimates of the matrix of regression coefficients and residual precision matrix. Varying the scale of the continuous spike densities facilitates dynamic posterior exploration and allows us to filter out negligible regression coefficients and partial covariances gradually. Our method is seen to substantially outperform regularization competitors on simulated data. We demonstrate our method with a re-examination of data from a recent observational study of the effect of playing high school football on several later-life cognition, psychological, and socio-economic outcomes.
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefulness of continuous bimodal priors to model hypervariance parameters, and the effect scaling has on the posterior mean through its relationship to penalization. Several model selection strategies, some frequentist and some Bayesian in nature, are developed and studied theoretically. We demonstrate the importance of selective shrinkage for effective variable selection in terms of risk misclassification, and show this is achieved using the posterior from a rescaled spike and slab model. We also show how to verify a procedures ability to reduce model uncertainty in finite samples using a specialized forward selection strategy. Using this tool, we illustrate the effectiveness of rescaled spike and slab models in reducing model uncertainty.
88 - Ray Bai 2020
We study estimation and variable selection in non-Gaussian Bayesian generalized additive models (GAMs) under a spike-and-slab prior for grouped variables. Our framework subsumes GAMs for logistic regression, Poisson regression, negative binomial regression, and gamma regression, and encompasses both canonical and non-canonical link functions. Under mild conditions, we establish posterior contraction rates and model selection consistency when $p gg n$. For computation, we propose an EM algorithm for obtaining MAP estimates in our model, which is available in the R package sparseGAM. We illustrate our method on both synthetic and real data sets.
High-dimensional data sets have become ubiquitous in the past few decades, often with many more covariates than observations. In the frequentist setting, penalized likelihood methods are the most popular approach for variable selection and estimation in high-dimensional data. In the Bayesian framework, spike-and-slab methods are commonly used as probabilistic constructs for high-dimensional modeling. Within the context of linear regression, Rockova and George (2018) introduced the spike-and-slab LASSO (SSL), an approach based on a prior which provides a continuum between the penalized likelihood LASSO and the Bayesian point-mass spike-and-slab formulations. Since its inception, the spike-and-slab LASSO has been extended to a variety of contexts, including generalized linear models, factor analysis, graphical models, and nonparametric regression. The goal of this paper is to survey the landscape surrounding spike-and-slab LASSO methodology. First we elucidate the attractive properties and the computational tractability of SSL priors in high dimensions. We then review methodological developments of the SSL and outline several theoretical developments. We illustrate the methodology on both simulated and real datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا