Do you want to publish a course? Click here

Deep Discrete Supervised Hashing

73   0   0.0 ( 0 )
 Added by Qing-Yuan Jiang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, utilizing supervised information to directly guide discrete (binary) coding procedure can avoid sub-optimal solution and improve the accuracy. On the other hand, deep hashing, which integrates deep feature learning and hash-code learning into an end-to-end architecture, can enhance the feedback between feature learning and hash-code learning. The key in discrete supervised hashing is to adopt supervised information to directly guide the discrete coding procedure in hashing. The key in deep hashing is to adopt the supervised information to directly guide the deep feature learning procedure. However, there have not existed works which can use the supervised information to directly guide both discrete coding procedure and deep feature learning procedure in the same framework. In this paper, we propose a novel deep hashing method, called deep discrete supervised hashing (DDSH), to address this problem. DDSH is the first deep hashing method which can utilize supervised information to directly guide both discrete coding procedure and deep feature learning procedure, and thus enhance the feedback between these two important procedures. Experiments on three real datasets show that DDSH can outperform other state-of-the-art baselines, including both discrete hashing and deep hashing baselines, for image retrieval.



rate research

Read More

Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and database (retrieval) points. The training of these symmetric deep supervised hashing methods is typically time-consuming, which makes them hard to effectively utilize the supervised information for cases with large-scale database. In this paper, we propose a novel deep supervised hashing method, called asymmetric deep supervised hashing (ADSH), for large-scale nearest neighbor search. ADSH treats the query points and database points in an asymmetric way. More specifically, ADSH learns a deep hash function only for query points, while the hash codes for database points are directly learned. The training of ADSH is much more efficient than that of traditional symmetric deep supervised hashing methods. Experiments show that ADSH can achieve state-of-the-art performance in real applications.
127 - Qing-Yuan Jiang , Wu-Jun Li 2016
Due to its low storage cost and fast query speed, cross-modal hashing (CMH) has been widely used for similarity search in multimedia retrieval applications. However, almost all existing CMH methods are based on hand-crafted features which might not be optimally compatible with the hash-code learning procedure. As a result, existing CMH methods with handcrafted features may not achieve satisfactory performance. In this paper, we propose a novel cross-modal hashing method, called deep crossmodal hashing (DCMH), by integrating feature learning and hash-code learning into the same framework. DCMH is an end-to-end learning framework with deep neural networks, one for each modality, to perform feature learning from scratch. Experiments on two real datasets with text-image modalities show that DCMH can outperform other baselines to achieve the state-of-the-art performance in cross-modal retrieval applications.
When facing large-scale image datasets, online hashing serves as a promising solution for online retrieval and prediction tasks. It encodes the online streaming data into compact binary codes, and simultaneously updates the hash functions to renew codes of the existing dataset. To this end, the existing methods update hash functions solely based on the new data batch, without investigating the correlation between such new data and the existing dataset. In addition, existing works update the hash functions using a relaxation process in its corresponding approximated continuous space. And it remains as an open problem to directly apply discrete optimizations in online hashing. In this paper, we propose a novel supervised online hashing method, termed Balanced Similarity for Online Discrete Hashing (BSODH), to solve the above problems in a unified framework. BSODH employs a well-designed hashing algorithm to preserve the similarity between the streaming data and the existing dataset via an asymmetric graph regularization. We further identify the data-imbalance problem brought by the constructed asymmetric graph, which restricts the application of discrete optimization in our problem. Therefore, a novel balanced similarity is further proposed, which uses two equilibrium factors to balance the similar and dissimilar weights and eventually enables the usage of discrete optimizations. Extensive experiments conducted on three widely-used benchmarks demonstrate the advantages of the proposed method over the state-of-the-art methods.
123 - Qing-Yuan Jiang , Wu-Jun Li 2017
Due to its storage and retrieval efficiency, cross-modal hashing~(CMH) has been widely used for cross-modal similarity search in multimedia applications. According to the training strategy, existing CMH methods can be mainly divided into two categories: relaxation-based continuous methods and discrete methods. In general, the training of relaxation-based continuous methods is faster than discrete methods, but the accuracy of relaxation-based continuous methods is not satisfactory. On the contrary, the accuracy of discrete methods is typically better than relaxation-based continuous methods, but the training of discrete methods is time-consuming. In this paper, we propose a novel CMH method, called discrete latent factor model based cross-modal hashing~(DLFH), for cross modal similarity search. DLFH is a discrete method which can directly learn the binary hash codes for CMH. At the same time, the training of DLFH is efficient. Experiments on real datasets show that DLFH can achieve significantly better accuracy than existing methods, and the training time of DLFH is comparable to that of relaxation-based continuous methods which are much faster than existing discrete methods.
Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into the binary hash codes with discriminative semantic labels. Because of its advantages on retrieval and storage efficiency, it is widely used for solving efficient cross-modal retrieval. However, existing researches equally handle the different tasks of cross-modal retrieval, and simply learn the same couple of hash functions in a symmetric way for them. Under such circumstance, the uniqueness of different cross-modal retrieval tasks are ignored and sub-optimal performance may be brought. Motivated by this, we present a Task-adaptive Asymmetric Deep Cross-modal Hashing (TA-ADCMH) method in this paper. It can learn task-adaptive hash functions for two sub-retrieval tasks via simultaneous modality representation and asymmetric hash learning. Unlike previous cross-modal hashing approaches, our learning framework jointly optimizes semantic preserving that transforms deep features of multimedia data into binary hash codes, and the semantic regression which directly regresses query modality representation to explicit label. With our model, the binary codes can effectively preserve semantic correlations across different modalities, meanwhile, adaptively capture the query semantics. The superiority of TA-ADCMH is proved on two standard datasets from many aspects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا