Do you want to publish a course? Click here

Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

84   0   0.0 ( 0 )
 Added by Tais Gorkhover
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrafast X-ray imaging provides high resolution information on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimen, which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely-defined. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers in order to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lat- eral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond time scale.



rate research

Read More

We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($lambdaapprox130 text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities.
In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.
The mechanism of transverse radiation viscosity for nanospheres moving in laser field is analyzed. It is demonstrated that in the process of light scattering by these particles besides the force Fs accelerating them in the direction of radiation propagation and the gradient force Fg that is due to the spatial inhomogeneity of the light field, there are forces Fvisc that slow down the movement of particles in the transverse directions. These light viscosity forces are due to the Doppler shift in frequency of scattered radiation. The general expressions for these forces acting on particles that scatter radiation in the Rayleigh regime are derived and applied to estimate their effect on levitated nanospheres and also on slow electrons moving in the laser and magnetic fields. The possible experiments for observation the effects of light viscosity is discussed.
High harmonic generation is a convenient way to obtain extreme ultraviolet light from table-top laser systems and the experimental tools to exploit this simple and powerful light source for time-resolved spectroscopy are being developed by several groups. For these applications, brightness and stability of the high harmonic generation is a key feature. This article focuses on practical aspects in the generation of extreme ultraviolet pulses with ultrafast commercial lasers, namely generation parameters and online monitoring as well as analysis of generation yield and stability.
A photofragmentation study of gas-phase indole (C$_8$H$_7$N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon $1s$ orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا