Do you want to publish a course? Click here

Long-term photometric variations in the candidate white-dwarf pulsar AR Scorpii from K2, CRTS, and ASAS-SN observations

152   0   0.0 ( 0 )
 Added by Colin Littlefield
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze long-cadence Kepler K2 observations of AR Sco from 2014, along with survey photometry obtained between 2005 and 2016 by the Catalina Real-Time Sky Survey and the All-Sky Automated Survey for Supernovae. The K2 data show the orbital modulation to have been fairly stable during the 78 days of observations, but we detect aperiodic deviations from the average waveform with an amplitude of ~2% on a timescale of a few days. A comparison of the K2 data with the survey photometry reveals that the orbital waveform gradually changed between 2005 and 2010, with the orbital maximum shifting to earlier phases. We compare these photometric variations with proposed models of this unusual system.



rate research

Read More

We obtained high temporal resolution spectroscopy of the unusual binary system AR Sco covering nearly an orbit. The H$alpha$ emission shows a complex line structure similar to that seen in some polars during quiescence. Such emission is thought to be due to long-lived prominences originating on the red dwarf. A difference between AR Sco and these other systems is that the white dwarf in AR Sco is rapidly spinning relative to the orbital period. Slingshot prominences stable at 3 to 5 stellar radii require surface magnetic fields between 100 and 500 G. This is comparable to the estimated WD magnetic field strength near the surface of the secondary. Our time-resolved spectra also show emission fluxes, line equivalent widths, and continuum color varying over the orbit and the beat/spin periods of the system. During much of the orbit, the optical spectral variations are consistent with synchrotron emission with the highest energy electrons cooling between pulses. On the time-scale of the beat/spin period we detect red and blue-shifted H$alpha$ emission flashes that reach velocities of 700 km/s. Red-shifted Balmer emission flashes are correlated with the bright phases of the continuum beat pulses while blue-shifted flashes appear to prefer the time of minimum in the beat light curve. We propose that much of the energy generated in AR Sco comes from fast magnetic reconnection events occurring near the inward face of the secondary and we show that the energy generated by magnetic reconnection can account for the observed excess luminosity from the system.
The variable star AR Sco was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55 hr orbit with a more massive white dwarf. Here we report new optical observations of AR Sco that show strong linear polarization (up to 40%) which varies strongly and periodically on both the spin period of the white dwarf and the beat period between the spin and orbital period, as well as low level (< a few %) circular polarization. These observations support the notion that, similar to neutron star pulsars, the pulsed luminosity of AR Sco is powered by the spin-down of the rapidly-rotating white dwarf which is highly magnetised (up to 500 MG). The morphology of the modulated linear polarization is similar to that seen in the Crab pulsar, albeit with a more complex waveform owing to the presence of two periodic signals of similar frequency. Magnetic interactions between the two component stars, coupled with synchrotron radiation from the white dwarf, power the observed polarized and non-polarized emission. AR Scorpii is therefore the first example of a white dwarf pulsar.
We report a study of the X-ray emission from the white dwarf/M-type star binary system AR Scorpii using archival data taken in 2016-2020. It has been known that the X-ray emission is dominated by the optically thin thermal plasma emission, and its flux level varies significantly over the orbital phase. The X-ray emission also contains a component that modulates with the beat frequency between the white dwarfs spin frequency and orbital frequency. In this new analysis, the 2020 data taken by NICER shows that the X-ray emission is modulating with the spin frequency as well as the beat frequency, indicating that part of the X-ray emission is coming from the white dwarfs magnetosphere. It is found that the signal of the spin frequency appears only at a specific orbital phase, while the beat signal appears over the orbital phase. We interpret the X-ray emission modulating with the spin frequency and the beat frequency as a result of the synchrotron emission from electrons with a smaller and larger pitch angle, respectively. In a long-term evolution, the beat pulse profile averaged over the orbital phase changed from a single-peak structure in 2016/2018 to a double-peak structure in 2020. The observed X-ray flux levels measured in 2016/2017 are higher than those measured in 2018/2020. The plasma temperature and amplitude of the orbital waveform might vary with time too. These results indicate that the X-ray emission from AR Scorpii evolves on a timescale of years. This long-term evolution would be explained by a super-orbital modulation related to, for example, a precession of the white dwarf, or a fluctuation of the system related to activity of the companion star.
The compact object in the interacting binary AR Sco has widely been presumed to be a rapidly rotating, magnetized white dwarf (WD), but it has never been detected directly. Isolating its spectrum has proven difficult because the spin-down of the WD generates pulsed synchrotron radiation that far outshines the WDs photosphere. As a result, a previous study of AR Sco was unable to detect the WD in the averaged far-ultraviolet spectrum from a Hubble Space Telescope (HST) observation. In an effort to unveil the WDs spectrum, we reanalyze these HST observations by calculating the average spectrum in the troughs between synchrotron pulses. We identify weak spectral features from the previously unseen WD and estimate its surface temperature to be 11500$pm$500K. Additionally, during the synchrotron pulses, we detect broad Lyman-$alpha$ absorption consistent with hot WD spectral models. We infer the presence of a pair of hotspots, with temperatures between 23000K and 28000K, near the magnetic poles of the WD. As the WD is not expected to be accreting from its companion, we describe two possible mechanisms for heating the magnetic poles. The Lyman-$alpha$ absorption of the hotspots appears relatively undistorted by Zeeman splitting, constraining the WDs field strength to be 100 MG, but the data are insufficient to search for the subtle Zeeman splits expected at lower field strengths.
The binary system AR Scorpii hosts an M-type main sequence cool star orbiting around a magnetic white dwarf in the Milky Way Galaxy. The broadband non-thermal emission over radio, optical and X-ray wavebands observed from AR Scorpii indicates strong modulations on the spin frequency of the white dwarf as well as the spin-orbit beat frequency of the system. Therefore, AR Scorpii is also referred to as a white dwarf pulsar wherein a fast spinning white dwarf star plays very crucial role in the broadband non-thermal emission. Several interpretations for the observed features of AR Scorpii appear in the literature without firm conclusions. In this work, we investigate connection between some of the important physical properties like spin-down power, surface magnetic field, equation of state, temperature and gravity associated with the white dwarf in the binary system AR Scorpii and its observational characteristics. We explore the plausible effects of white dwarf surface magentic field on the absence of substantial accretion in this binary system and also discuss the gravitational wave emission due to magnetic deformation mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا