No Arabic abstract
We present a model of holographic dark energy in which the Infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the Infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessence-like, phantom-like, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from Big Bang Nucleosynthesis.
In this work we shall demonstrate that it is possible to describe in a unified way a primordial bounce with the dark energy era, in the context of Gauss-Bonnet modified gravity. Particularly, the early time bounce has a nearly scale invariant power spectrum of primordial scalar curvature perturbations, while the dark energy era is a viable one, meaning that it mimics the $Lambda$-Cold-Dark-Matter model and also is compatible with the Planck 2018 data on cosmological parameters. In addition, our analysis indicates that the dark energy era is free from dark energy oscillations, which occur in the context of $f(R)$ gravity. We further addressed the later issue by examining $f(R)$ extensions of Gauss-Bonnet models, and we showed that the $f(R)$ gravity part of the action actually produces the dark energy oscillations at redshifts $zsim 4$.
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit an isotropic power-law inflation provided that the scalar field is phantom. Furthermore, stability analysis based on the dynamical system method is performed to indicate that this inflation solution is indeed stable and attractive. More interestingly, a gradient instability in tensor perturbations is shown to disappear in this model.
We formulate Barrow holographic dark energy, by applying the usual holographic principle at a cosmological framework, but using the Barrow entropy instead of the standard Bekenstein-Hawking one. The former is an extended black-hole entropy that arises due to quantum-gravitational effects which deform the black-hole surface by giving it an intricate, fractal form. We extract a simple differential equation for the evolution of the dark energy density parameter, which possesses standard holographic dark energy as a limiting sub-case, and we show that the scenario can describe the universe thermal history, with the sequence of matter and dark energy eras. Additionally, the new Barrow exponent $Delta$ significantly affects the dark energy equation of state, and according to its value it can lead it to lie in the quintessence regime, in the phantom regime, or experience the phantom-divide crossing during the evolution.
In order to apply holography and entropy relations to the whole universe, which is a gravitational and thus nonextensive system, for consistency one should use the generalized definition for the universe horizon entropy, namely Tsallis nonextensive entropy. We formulate Tsallis holographic dark energy, which is a generalization of standard holographic dark energy quantified by a new dimensionless parameter $delta$, possessing the latter as a particular sub-case. We provide a simple differential equation for the dark energy density parameter, as well as an analytical expression for its equation-of-state parameter. In this scenario the universe exhibits the usual thermal history, namely the successive sequence of matter and dark-energy epochs, before resulting in a complete dark energy domination in the far future. Additionally, the dark energy equation-of-state parameter presents a rich behavior and, according to the value of $delta$, it can be quintessence-like, phantom-like, or experience the phantom-divide crossing before or after the present time. Finally, we confront the scenario with Supernovae type Ia and Hubble parameter observational data, and we show that the agreement is very good, with $delta$ preferring a value slightly larger than its standard value 1.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.