N=1, D=4 non linear sigma models, parametrized by chiral superfields, usually describe Kaehlerian geometries, provided that Einstein frame supergravity is used. The sigma model metric is no longer Kaehler when local supersymmetry becomes nonlinearly realized through the nilpotency of the supergravity auxiliary fields. In some cases the nonlinear realization eliminates one scalar propagating degree of freedom. This happens when the sigma model conformal-frame metric has co-rank 2. In the geometry of the inflaton, this effect eliminates its scalar superpartner. We show that the sigma model metric remains semidefinite positive in all cases, due the to positivity properties of the conformal-frame sigma model metric.