Do you want to publish a course? Click here

Thermal desorption of astrophysically relevant molecules from forsterite(010)

127   0   0.0 ( 0 )
 Added by John Thrower
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present temperature programmed desorption (TPD) measurements of CO, CH$_4$, O$_2$ and CO$_2$ from the forsterite(010) surface in the sub-monolayer and multilayer coverage regimes. In the case of CO, CH$_4$ and O$_2$, multilayer growth begins prior to saturation of the monolayer peak, resulting in two clearly distinguishable desorption peaks. On the other hand a single peak for CO$_2$ is observed which shifts from high temperature at low coverage to low temperature at high coverages, sharpening upon multilayer formation. The leading edges are aligned for all the molecules in the multilayer coverage regime indicating zero order desorption. We have extracted multilayer desorption energies for these molecules using an Arrhenius analysis. For sub-monolayer coverages, we observe an extended desorption tail to higher temperature. Inversion analysis has been used to extract the coverage dependent desorption energies in the sub-monolayer coverage regime, from which we obtain the desorption energy distribution. We found that owing to the presence of multiple adsorption energy sites on the crystalline surface the typical desorption energies of these small molecules are significantly larger than obtained in previous measurements for several other substrates. Therefore molecules bound to crystalline silicate surfaces may remain locked in the solid state for a longer period of time before desorption into the gas phase.



rate research

Read More

The thermal desorption of ammonia (NH$_3$) from single crystal forsterite (010) has been investigated using temperature-programmed desorption. The effect of defects on the desorption process has been probed by the use of a rough cut forsterite surface prepared from the cleaved forsterite sample. Several approaches have been used to extract the desorption energy and pre-exponential factor describing the desorption kinetics. In the sub-monolayer coverage regime, the NH$_3$ desorption shows a broad distribution of desorption energies, indicating the presence of different adsorption sites, which results in an apparent coverage-dependent desorption energy. This distribution is sensitive to the surface roughness with the cut forsterite surface displaying a significantly broader distribution of desorption energies compared to the cleaved forsterite surface. The cut forsterite surface exhibits sites with desorption energies up to 62.5 kJ mol$^{-1} $ in comparison to a desorption energy of up to 58.0 kJ mol$^{-1} $ for the cleaved surface. Multilayer desorption is independent of the nature of the forsterite surface used, with a desorption energy of ($25.8pm0.9$) kJ mol$^{-1} $. On astrophysically relevant heating time-scales, the presence of a coverage dependent desorption energy distribution results in a lengthening of the NH$_3$ desorption time-scale by $5.9times 10^4$ yr compared to that expected for a single desorption energy. In addition, the presence of a larger number of high-energy adsorption sites on the rougher cut forsterite surface leads to a further lengthening of ca. 7000 yr.
Millimeter and centimeter observations are discovering an increasing number of interstellar complex organic molecules (iCOMs) in a large variety of star forming sites, from the earliest stages of star formation to protoplanetary disks and in comets. In this context it is pivotal to understand how the solid phase interactions between iCOMs and grain surfaces influence the thermal desorption process and, therefore, the presence of molecular species in the gas phase. In laboratory, it is possible to simulate the thermal desorption process deriving important parameters such as the desorption temperatures and energies. We report new laboratory results on temperature-programmed desorption (TPD) from olivine dust of astrophysical relevant ice mixtures of water, acetonitrile, and acetaldehyde. We found that in the presence of grains, only a fraction of acetaldehyde and acetonitrile desorbs at about 100 K and 120 K respectively, while 40% of the molecules are retained by fluffy grains of the order of 100 {mu}m up to temperatures of 190-210 K. In contrast with the typical assumption that all molecules are desorbed in regions with temperatures higher than 100 K, this result implies that about 40% of the molecules can survive on the grains enabling the delivery of volatiles towards regions with temperatures as high as 200 K and shifting inwards the position of the snowlines in protoplanetary disks. These studies offer a necessary support to interpret observational data and may help our understanding of iCOMs formation providing an estimate of the fraction of molecules released at various temperatures.
Methanol ice is embedded in interstellar ice mantles present in dense molecular clouds. We aim to measure the sputtering efficiencies starting from different ice mantles of varying compositions experimentally, in order to evaluate their potential impact on astrochemical models. The sputtering yields of complex organic molecules is of particular interest, since few mechanisms are efficient enough to induce a significant feedback to the gas phase. We irradiated methanol and carbon dioxide ice mixtures of varying ratios with swift heavy ions in the electronic sputtering regime. We monitored the evolution of the infrared spectra and the species released to the gas phase with a mass spectrometer. Methanol and 13C-methanol isotopologue were used to remove any ambiguity on the measured irradiation products. The sputtering of methanol embedded in carbon dioxide ice is an efficient process leading to the ejection of intact methanol in the gas phase. We establish that when methanol is embedded in a carbon-dioxide-rich mantle exposed to cosmic rays, a significant fraction is sputtered as intact molecules. The sputtered fraction follows the time-dependent bulk composition of the ice mantle, the latter evolving with time due to the radiolysis-induced evolution of the bulk. If methanol is embedded in a carbon dioxide ice matrix, as the analyses of the spectral shape of the CO2 bending mode observations in some lines of sight suggest, the overall methanol sputtering yield is higher than if embedded in a water ice mantle. The sputtering is increased by a factor close to the dominant ice matrix sputtering yield, which is about six times higher for pure carbon dioxide ice when compared to water ice. These experiments are further constraining the cosmic-ray-induced ice mantle sputtering mechanisms important role in the gas-phase release of complex organic molecules from the interstellar solid phase.
We review recent work on the photoionization of atomic ions of astrophysical interest that has been carried out at the photon-ion merged-beams setup PIPE, a permanently installed end station at the XUV beamline P04 of the PETRAIII synchrotron radiation source operated by DESY in Hamburg, Germany. Our results on single and multiple L-shell photoionization of Fe+, Fe2+, and Fe3+ ions and on single and multiple K-shell photoionization of C-, C+, C4+, Ne+, and Si2+ ions are discussed in astrophysical contexts. Moreover, these experimental results bear witness of the fact, that the implementation of the photon-ion merged-beams method at one of the worlds brightest synchrotron light sources has led to a breakthrough for the experimental study of atomic inner-shell photoionization processes with ions.
Recent experimental results about the formation of molecular hydrogen on astrophysically relevant surfaces under conditions close to those encountered in the interstellar medium are analyzed using rate equations. The parameters of the rate equation model are fitted to temperature-programmed desorption curves obtained in the laboratory. These parameters are the activation energy barriers for atomic hydrogen diffusion and desorption, the barrier for molecular hydrogen desorption, and the probability of spontaneous desorption of a hydrogen molecule upon recombination. The model is a generalization of the Polanyi-Wigner equation and provides a description of both first and second order kinetic processes within a single model. Using the values of the parameters that fit best the experimental results, the efficiency of hydrogen recombination on olivine and amorphous carbon surfaces is obtained for a range of hydrogen flux and surface temperature pertinent to a wide range of interstellar conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا