Do you want to publish a course? Click here

Non-weight representations of Cartan type S Lie algebras

115   0   0.0 ( 0 )
 Added by Juanjuan Zhang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

For the two Cartan type S subalgebras of the Witt algebra $W_n$, called Lie algebras of divergence-zero vector fields, we determine all module structures on the universal enveloping algebra of their Cartan subalgebra $h_n$. We also give all submodules of these modules.



rate research

Read More

The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplicable new phenomena, of which (a) and (b) concern hyperbolic (almost affine) complex Lie (super)algebras, except for the 5 Lie superalgebras whose Cartan matrices have 0 on the main diagonal: (a) several of the inverses of Cartan matrices have all their elements negative (not just non-positive, as they should be according to an a priori characterization due to Zhang Hechun); (b) the 0s only occur on the main diagonals of the inverses; (c) the determinants of inequivalent Cartan matrices of the simple Lie (super)algebra may differ (in any characteristic). We interpret most of the results of Wei Yangjiang and Zou Yi Ming, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Alg. Appl., 521 (2017) 283--298 as inverses of the Gram matrices of non-degenerate invariant symmetric bilinear forms on the (super)algebras considered, not of Cartan matrices, and give more adequate references. In particular, the inverses of Cartan matrices of simple Lie algebras were already published, starting with Dynkins paper in 1952, see also Table 2 in Springers book by Onishchik and Vinberg (1990).
In this paper, a family of non-weight modules over Lie superalgebras $S(q)$ of Block type are studied. Free $U(eta)$-modules of rank $1$ over Ramond-Block algebras and free $U(mathfrak{h})$-modules of rank $2$ over Neveu-Schwarz-Block algebras are constructed and classified. Moreover, the sufficient and necessary conditions for such modules to be simple are presented, and their isomorphism classes are also determined. The results cover some existing results.
The essential feature of a root-graded Lie algebra L is the existence of a split semisimple subalgebra g with respect to which L is an integrable module with weights in a possibly non-reduced root system S of the same rank as the root system R of g. Examples include map algebras (maps from an affine scheme to g, S = R), matrix algebras like sl_n(A) for a unital associative algebra A (S = R = A_{n-1}), finite-dimensional isotropic central-simple Lie algebras (S properly contains R in general), and some equivariant map algebras. In this paper we study the category of representations of a root-graded Lie algebra L which are integrable as representations of g and whose weights are bounded by some dominant weight of g. We link this category to the module category of an associative algebra, whose structure we determine for map algebras and sl_n(A). Our results unify previous work of Chari and her collaborators on map algebras and of Seligman on isotropic Lie algebras.
83 - Tosiaki Kori 2021
Let L be the space of spinors on the 3-sphere that are the restrictions of the Laurent polynomial type harmonic spinors on C^2. L becomes an associative algebra. For a simple Lie algebra g, the real Lie algebra Lg generated by the tensor product of L and g is called the g-current algebra. The real part K of L becomes a commutative subalgebra of L. For a Cartan subalgebra h of g, h tensored by K becomes a Cartan subalgebra Kh of Lg. The set of non-zero weights of the adjoint representation of Kh corresponds bijectively to the root space of g. Let g=h+e+ f be the standard triangular decomposition of g, and let Lh, Le and Lf respectively be the Lie subalgebras of Lg generated by the tensor products of L with h, e and f respectively . Then we have the triangular decomposition: Lg=Lh+Le+Lf, that is also associated with the weight space decomposition of Lg. With the aid of the basic vector fields on the 3-shpere that arise from the infinitesimal representation of SO(3) we introduce a triple of 2-cocycles {c_k; k=0,1,2} on Lg. Then we have the central extension: Lg+ sum Ca_k associated to the 2-cocycles {c_k; k=0,1,2}. Adjoining a derivation coming from the radial vector field on S^3 we obtain the second central extension g^=Lg+ sum Ca_k + Cn. The root space decomposition of g^ as welll as the Chevalley generators of g^ will be given.
Over an algebraically closed fields, an alternative to the method due to Kostrikin and Shafarevich was recently suggested. It produces all known simple finite dimensional Lie algebras in characteristic p>2. For p=2, we investigate one of the steps of this method, interpret several other simple Lie algebras, previously known only as sums of their components, as Lie algebras of vector fields. One new series of exceptional simple Lie algebras is discovered, together with its hidden supersymmetries. In characteristic 2, certain simple Lie algebras are desuperizations of simple Lie superalgebras. Several simple Lie algebras we describe as results of generalized Cartan prolongation of the non-positive parts, relative a simplest (by declaring degree of just one pair of root vectors corresponding to opposite simple roots nonzero) grading by integers, of Lie algebras with Cartan matrix are desuperizations of characteristic
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا