No Arabic abstract
The localization of the repeating fast radio burst (FRB), FRB 121102, suggests that it is associated with a persistent radio-luminous compact source in the FRB host galaxy. Using the FIRST radio catalog, I present a search for luminous persistent sources in nearby galaxies, with radio luminosities >10% of the FRB 121102 persistent source luminosity. The galaxy sample contains about 30% of the total galaxy g-band luminosity within <108 Mpc, in a footprint of 10,600 deg^2. After rejecting sources likely due to active galactic nuclei activity or background sources, I remain with 11 candidates that are presumably associated with galactic disks or star formation regions. At least some of these candidates are likely to be due to chance alignment. In addition, I find 85 sources within 1 of galactic nuclei. Assuming the radio persistent sources are not related to galactic nuclei and that they follow the galaxy g-band light, the 11 sources imply a 95% confidence upper limit on the space density of luminous persistent sources of <5x10^-5 Mpc^-3, and that at any given time only a small fraction of galaxies host a radio luminous persistent source (<10^-3 L_*^-1). Assuming persistent sources life time of 100 yr, this implies a birth rate of <5x10^-7 yr^-1 Mpc^-3. Given the FRB volumetric rate, and assuming that all FRBs repeat and are associated with persistent radio sources, this sets a lower limit on the rate of FRB events per persistent source of >0.8 yr^-1. I argue that these 11 candidates are good targets for FRB searches and I estimate the FRB event rate from these candidates.
We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories. We use multi-observatory constraints and modeling of bursts seen only at 3 GHz to confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ~500 MHz envelope and apparent radio energy as high as $10^{40}$ erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources $R_{FRB} approx 5x10^{-5}/N_r$ Mpc$^{-3}$ yr$^{-1}$, where $N_r$ is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts, if the typical FRB repeats on the order of thousands of times during its lifetime.
The spectra of fast radio bursts (FRBs) encode valuable information about the sources local environment, underlying emission mechanism(s), and the intervening media along the line of sight. We present results from a long-term multiwavelength radio monitoring campaign of two repeating FRB sources, FRB 121102 and FRB 180916.J0158+65, with the NASA Deep Space Network (DSN) 70-m radio telescopes (DSS-63 and DSS-14). The observations of FRB 121102 were performed simultaneously at 2.3 and 8.4 GHz, and spanned a total of 27.3 hr between 2019 September 19 and 2020 February 11. We detected 2 radio bursts in the 2.3 GHz frequency band from FRB 121102, but no evidence of radio emission was found at 8.4 GHz during any of our observations. We observed FRB 180916.J0158+65 simultaneously at 2.3 and 8.4 GHz, and also separately in the 1.5 GHz frequency band, for a total of 101.8 hr between 2019 September 19 and 2020 May 14. Our observations of FRB 180916.J0158+65 spanned multiple activity cycles during which the source was known to be active and covered a wide range of activity phases. Several of our observations occurred during times when bursts were detected from the source between 400-800 MHz with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope. However, no radio bursts were detected from FRB 180916.J0158+65 at any of the frequencies used during our observations with the DSN radio telescopes. We find that FRB 180916.J0158+65s apparent activity is strongly frequency-dependent due to the narrowband nature of its radio bursts, which have less spectral occupancy at high radio frequencies ($gtrsim$ 2 GHz). We also find that fewer or fainter bursts are emitted from the source at high radio frequencies. We discuss the implications of these results on possible progenitor models of repeating FRBs.
We report the detection of a single burst from the first-discovered repeating Fast Radio Burst source, FRB 121102, with CHIME/FRB, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission extends down to at least 600 MHz, the lowest frequency detection of this source yet. The burst, detected with a significance of 23.7$sigma$, has fluence 12$pm$3 Jy ms and shows complex time and frequency morphology. The 34 ms width of the burst is the largest seen for this object at any frequency. We find evidence of sub-burst structure that drifts downward in frequency at a rate of -3.9$pm$0.2 MHz ms$^{-1}$. Our best fit tentatively suggests a dispersion measure of 563.6$pm$0.5 pc cm$^{-3}$, which is ${approx}$1% higher than previously measured values. We set an upper limit on the scattering time at 500 MHz of 9.6 ms, which is consistent with expectations from the extrapolation from higher frequency data. We have exposure to the position of FRB 121102 for a total of 11.3 hrs within the FWHM of the synthesized beams at 600 MHz from 2018 July 25 to 2019 February 25. We estimate on the basis of this single event an average burst rate for FRB 121102 of 0.1-10 per day in the 400-800 MHz band for a median fluence threshold of 7 Jy ms in the stated time interval.
We present SMA and NOEMA observations of the host galaxy of FRB 121102 in the CO 3-2 and 1-0 transitions, respectively. We do not detect emission from either transition. We set $3sigma$ upper limits to the CO luminosity $L_{CO} < 2.5 times 10^7,{rm K,km,s}^{-1} {, rm pc^{-2}}$ for CO 3-2 and $L_{CO} < 2.3 times 10^9, {rm K,km,s}^{-1} {, rm pc^{-2}}$ for CO 1-0. For Milky-Way-like star formation properties, we set a $3sigma$ upper limit on the $H_2$ mass of $2.5 times 10^8 rm M_{odot}$, slightly less than the predictions for the $H_2$ mass based on the star formation rate. The true constraint on the $H_2$ mass may be significantly higher, however, because of the reduction in CO luminosity that is common forlow-metallicity dwarf galaxies like the FRB host galaxy. These results demonstrate the challenge of identifying the nature of FRB progenitors through study of the host galaxy molecular gas. We also place a limit of 42 $mu$Jy ($3sigma$) on the continuum flux density of the persistent radio source at 97 GHz, consistent with a power-law extrapolation of the low frequency spectrum, which may arise from an AGN or other nonthermal source.
Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. (2016) that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of $M_{rm ej}gtrsim{rm a few} M_odot$, a neutron star with an age of $t_{rm age} sim 10-100 rm yrs$, an initial spin period of $P_{i} lesssim$ a few ms, and a dipole magnetic field of $B_{rm dip} lesssim {rm a few} times 10^{13} rm G$ can be compatible with the observations. However, in this case, the magnetically-powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with $M_{rm ej} sim 0.1 M_odot$, a younger neutron star with $t_{rm age} sim 1-10$ yrs can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.